
 NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

EVALUATION OF PROGRAM SPECIFICATION AND
VERIFICATION SYSTEMS

by

Sonali Ubhayakar

June 2003

 Thesis Advisor: George Dinolt
 Co-Advisor: Tim Levin

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
 Evalutation of Program Specification and Verification Systems
6. AUTHOR(S) Ubhayakar, Sonali S.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT

Computer systems that earn a high degree of trust must be backed by rigorous verification methods. A
verification system is an interactive environment for writing formal specifications and checking formal proofs.
Verification systems allow large complicated proofs to be managed and checked interactively. We desire
evaluation criteria that provide a means of finding which verification system is suitable for a specific research
environment and what needs of a particular project the tool satisfies. Therefore, the purpose of this thesis is to
develop a methodology and set of evaluation criteria to evaluate verification systems for their suitability to
improve the assurance that systems meet security objectives. A specific verification system is evaluated with
respect to the defined methodology. The main goals are to evaluate whether the verification system has the
capability to express the properties of software systems and to evaluate whether the verification system can
provide inter-level mapping, a feature required for understanding how a system meets security objectives.

15. NUMBER OF
PAGES 159

4. SUBJECT TERMS Verification System, PVS, ACL2, Formal Methods, Inter-level Mapping,
Assurance, Verifiable Protection

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

EVALUATION OF PROGRAM SPECIFICATION AND VERIFICATION
SYSTEMS

Sonali S. Ubhayakar

Civilian, Naval Postgraduate School
B.S., University of California at Los Angeles, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
June 2003

Author: Sonali S. Ubhayakar

Approved by: George Dinolt, Thesis Advisor

 Timothy Levin, Co-Advisor

 Peter Denning, Chair
 Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Computer systems that earn a high degree of trust must be backed by rigorous

verification methods. A verification system is an interactive environment for writing

formal specifications and checking formal proofs. Verification systems allow large

complicated proofs to be managed and checked interactively. We desire evaluation

criteria that provide a means of finding which verification system is suitable for a specific

research environment and what needs of a particular project the tool satisfies. Therefore,

the purpose of this thesis is to develop a methodology and set of evaluation criteria to

evaluate verification systems for their suitability to improve the assurance that systems

meet security objectives. A specific verification system is evaluated with respect to the

defined methodology. The main goals are to evaluate whether the verification system has

the capability to express the properties of software systems and to evaluate whether the

verification system can provide inter-level mapping, a feature required for understanding

how a system meets security objectives.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PURPOSE...1
B. METHODOLOGY ..3
C. CONCLUSION ..4

II. CANDIDATE ELIMINATION FOR EVALUATION...7
A. INTRODUCTION..7
B. EVALUATION CRITERIA ...8

1. Age...8
2. Purpose..9
3. Implementation Language ..10
4. Resource Requirements...10
5. User Friendly..10
6. User Interface ...11
7. User Presentation Language ...12
8. Consistency of Specifications ..12
9. Executable Specifications ..13
10. Multiple Levels of Abstraction ...13
11. Expressiveness ..14

C. PHASE 2: SELECTED CANDIDATE: PVS ...15
D. CONCLUSION ..16

III. FORMAL SECURITY POLICY MODEL ...17
A. INTRODUCTION..17
B. NON-DISCRETIONARY ACCESS CONTROL18
C. THE BELL AND LAPADULA MODEL ..19
D. CONSTRUCTING OUR FORMAL SECURITY POLICY MODEL......20

1. Security Policy..20
2. The Basic Security Theorem...20
3. Anatomy of our model ...21

a. Elements ..21
b. Components...21
c. Properties...21
d. Rules ..21
e. Theorems and proofs ..22

E. THE MATHEMATICAL MODEL OF THE SECURITY POLICY22
F. CONCLUSION ..24

IV. FORMAL TOP LEVEL SPECIFICATION ...25
A. INTRODUCTION..25
B. CONSTRUCTION OF THE FORMAL TOP LEVEL

SPECIFICATION(FTLS) ...26

 viii

1. Represent the State Elements of the Implementation as State
Elements of the FTLS ..27

2. Represent the Entry Points of the Implementation as
Transform Functions of the FTLS ...27

C. CONCLUSION ..27

V. THE PVS SPECIFICATIONS..31
A. INTROUCTION TO PVS ...31

1. Semantics ..31
2. Typechecking..32
3. Theorem Prover ...32
4. Concerns ...34

B. UNDERSTANDING THE PVS SPECIFICATIONS35
1. The Formal Semantics of the PVS Specifications35

a. The Simple Type Theory ...35
b. Subtypes...35
c. Dependent Types ...36

2. Language of PVS Specifications ...36
a. Declarations ...36
b. TYPES ...38
c. Expressions..38
d. Theories ...39

C. ANATOMY OF THE FORMAL SECURITY POLICY MODEL
SPECIFICATION..41
1. Elements..41

a. Subjects..41
b. Objects ...41
c. Access Attributes {read, write}..41
d. Security Levels (Top Secret, Secret, Classified,

Unclassified)..41
2. Components ..41

a. Current Access set...41
b. Object hierarchy..41
c. Security Level function ...41
d. Access matrix...42

3. Properties..43
4. Rules ..43

a. State transition operators..43
D. CONSTRUCTION OF THE FORMAL TOP LEVEL

SPECIFICATION IN PVS..43
1. Anatomy of our model ...43

a. Elements ..43
b. Components...45
c. Properties...46
d. Rules ..46

E. IMPORTANT NOTES ..47

 ix

1. Sec_theory provides the Basic Security Theorem47
2. Prelude File of PVS..47
3. Disjointness in our Specifications ...48
4. Bus Error ..48

F. INTER-LEVEL MAPPING OF THE FTLS AND SECURITY
POLICY MODEL USING PVS..48
1. The Importing Function ..48
2. Correspondence between State Elements of the FTLS and

State Elements of the Formal Security Policy Model49
3. Correspondence between Transform Functions of FTLS and

Transform Functions of the Formal Security Policy Model49
4. Code Correspondence..49
5. Functional Languages..49

VI. CONCLUSIONS ..53
A. EVALUATION OF HOW WELL PVS DESCRIBED THE FORMAL

SECURITY POLICY MODEL AND THE FTLS54
1. Expressiveness and User Presentation Language (Specification...54
Language) ...54

a. Predicate Subtypes and TCCs...55
b. Dependent Types ...55
c. Higher-Order Logic ..56

2. Importance of The Type Checking System56
a. Memory Block in System Memory..57
b. Axiom Additions..58

B. EVALUATION OF HOW EASY IT WAS TO PROVE THAT THE
FTLS MAPPED TO THE FORMAL SECURITY POLICY MODEL60
1. Decision and Inference Strategies...60
2. Interface ..60

a. Usability...61
b. Concerns with the Interface ...63
c. Implementation Language..63

3. The Inter-level Mapping Problem..64
a. Initial Version of the Specifications.......................................66
b. Mapping of Sec_theory and the State Specifications67
c. Expressions for Mapping the FTLS Specification to the State

specification...68
C. LEVEL OF ASSURANCE PROVIDED..70

1. Consistency within each Specification ...70
2. Consistency between the FTLS and the Formal Security Policy

Model...71
D. FUTURE WORK...71

1. Solving the Inter-level Mapping Problem..71
2. Background of A Computational Logic of Applicative

Common Lisp (ACL2) ...71
a. Introduction...71

 x

b. Semantics...72
c. Guards/Other Features ...73
d. Theorem Prover...73
e. Concerns..73

3. ACL2 vs. PVS...74
a. Expressiveness...74
b. Theorem Prover...75

E. CONCLUDING REMARKS ..76
1. Methodology for Future Work ...77

APPENDIX A: AGE..83

APPENDIX B: PURPOSE ..85

APPENDIX C: IMPLEMENTATION LANGUAGE ..87

APPENDIX D: RESOURCE REQUIREMENTS...89

APPENDIX E: USER-FRIENDLY..91

APPENDIX F: USER INTERFACE..95

APPENDIX G: USER PRESENTATION LANGUAGE ...97

APPENDIX H: CONSISTENCY OF SPECIFICATIONS..99

APPENDIX I: EXECUTABLE SPECIFICATIONS ...101

APPENDIX J: MULTIPLE LEVELS OF ABSTRACTION ..103

APPENDIX K: EXPRESSIVENESS ...105

APPENDIX L: DEVELOPERS/SUPPORT..111

APPENDIX M: SEC_THEORY, SLABELS, STATE SPECIFICATIONS113

APPENDIX N: FTLSSPEC SPECIFICATION ..119

APPENDIX O: PROOF OF THEOREM SEQ_IS_SECURE OF SEC_THEORY
SPECIFICATION..127

GLOSSARY..129

REFERENCES...131

INITIAL DISTRIBUTION LIST ...137

 xi

LIST OF FIGURES

Figure 1. The Five Levels used in Formal Methods..5
Figure 2. Detailed Mapping of the Multiple Levels..28
Figure 3. Representation of FTLS...29
Figure 4. Proofs of Goals and Subgoals in PVS..33
Figure 5. Using a Pre-defined Lemma from the PVS Prelude File.................................34
Figure 6. Inter-level Mapping ...51
Figure 7. User Defined Strategies in PVS...62
Figure 8. Interface of PVS theorem prover ...63
Figure 9. Ideal Inter-level Mapping Construction...65
Figure 10. Current Inter-level Mapping Construction...67
Figure 11. Inter-level Mapping Problem...69

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Synopsis of Evaluation Criteria ...15
Table 2. Subjects to Security Labels..22
Table 3. Objects to Security Labels ...22
Table 4. Subjects to Objects...23
Table 5. Examples of the Language of PVS ..40
Table 6. Comparison between ACL2 and PVS (Questions Marks to be answered by

future research) ..80

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to thank my advisors, Dr. George Dinolt and Professor Timothy

Levin, for all their help and understanding while working on this thesis. Without them, I

do not think I would have learned and accomplished what I have in the last few months.

I especially want to thank them for their patience and friendly attitudes in every meeting

and discussion.

I would like to thank NSF for the SFS program here at the Naval Postgraduate

School. Lastly, my advisors and I would like to acknowledge the support from the

DARPA CHATS program under DARPA contract #R3W01 – R3W99.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

“Use theory to provide insight; use common sense and intutition where it

is suitable, but fall back upon the formal theory when difficulties and
complexities arise.”1

Computer systems that earn a high degree of trust must be backed by rigorous

verification methods. Formal methods deal with formally reasoning about computer

systems and whether those systems offer verifiable protection. Without the use of

verification systems, formal verification is impractical. These tools help to ensure the

absence of subversion by automating the processes of generating proofs and evaluation

evidence. Recognition is growing for the value of formal methods in certain area such as

verifying algorithms and exploring properties of complex interactions. The purpose of

this paper is to develop evaluation methodology for a set of verification systems that will

be used to improve the assurance that systems meet security objectives.

This thesis is divided into three phases: the desktop analysis phase, the hands-on

phase, and the evaluation phase. First, a list is developed of potential verification

systems for evaluation. Then a desktop analysis is performed of the candidates where the

potential verification systems will be analyzed to find out whether they meet a set of

broad functional requirements (evaluation criteria). Defining evaluation criteria provides

a means of finding which verification system is suitable for a specific research

environment and what needs of a particular project the tool satisfies. Therefore, the

selected verification system(s) are the ones that best satisfy the evaluation criteria.

A hands-on study or empirical study of the selected verification system is

performed. First, a simplified version of a complex computer security related problem is

constructed. Then a formally security policy and a formal top level specification is

developed in terms of the selected verification system. From there, a mapping of the

FTLS to the formal security policy model is attempted. The major goal of this paper is to

1 From Gries, David. The Science of Programming. 1981, pages 164 - 165

 xviii

illustrate whether the verification system chosen for evaluation can demonstrate inter-

level mapping, a feature that is required in later applications.

The verification system that is chosen for analysis is evaluated based on a set of

questions. These questions are: how well does the system describe the security policy

and the FTLS, how much assurance is provided, and how easy is it to prove that the

FTLS implements the policy? The main features of the verification system that are

analyzed to answer how well the verification system described the FTLS and the formal

security policy model are the system’s expressiveness, its consistency checking

mechanisms, and any features that help in improving the specifications. Whether the

system provides mechanisms for checking semantic and logical consistency can help to

determine the level of assurance provided. Lastly, decision and inference strategies of

the system’s theorem prover, the ease of use of the interface, and the implementation

language of the theorem prover are the main features that can establish how easy it is to

prove that the FTLS satisfies the policy. The main concern, however, is that the system

must first demonstrate the ability to provide inter-level mapping before a thorough

analysis can be constructed.

Our empirical study of the verification system that we chose to evaluate paves the

way for future research of other verification systems. The methodology used in this

thesis can be followed for the analysis of the next selected verification system. The inter-

level mapping work that has been done in this paper demonstrates new research that has

not been addressed in any PVS documentation that we have read. Therefore, the

problems we have come upon as well as the ideas we have brought forth should be

assessed and used in future work.

“If you wish to derive the most profit from your effort, look out for such features
of a problem at hand as may be useful in handling the problems to come. A

solution that you have obtained by your own effort or one that you have read or
heard, but have followed with real interest and insight, may become a pattern for
you, a model that you can imitate with advantage in solving similar problems....”2

2 Polya, George. Mathematical Discovery: On Understanding, Learning and Teaching Problem
Solving, Wiley, combined edition, 1981, preface

1

I. INTRODUCTION

A. PURPOSE

Computer systems that earn a high degree of trust must be backed by rigorous

verification methods. Formal methods deal with formally reasoning about computer

systems and whether those systems offer verifiable protection. “The IEEE definition of

verification is, confirmation by examination and provisions of objective evidence that

specified requirements have been fulfilled”. [Asc02] Formal verification is impractical

without the use of tools such as model-checkers and theorem provers. These tools help to

ensure the absence of subversion by automating the processes of generating proofs and

evaluation evidence. Recognition is growing for the value of formal methods in certain

areas such as verifying algorithms and exploring properties of complex interactions.

Tools are available that allow large complicated proofs to be managed and checked

interactively. However, many in the computer science community agree that these

verification systems may not make the activity of formal proof easy and may not be easy

to use.

The main classes of verification tools include theorem proving (both automatic

and human-assisted) and model checking approaches. The integrations of both these

approached is advocated and exemplified in current verification tools. Tool support is

important in formal methods, however it is a very skilled and time consuming activity.

There are theorem provers that integrate inductive proof techniques, general rewrite

procedures, model checking, propositional provers, linear arithmetic, other decision

procedures, tactic facilities, execution capabilities, enhanced static checking, lemma

generation, and computer algebra systems (See glossary). Some of the systems that are at

least partially successful in combining these techniques are PVS, HOL, EVES, and

ACL2. Another development direction of importance is the automation of verification

procedures most of which are dependent on highly skilled user input. In addition,

increased automation of induction proofs would be a great gain for the verification

systems. Verification tools can be shallower but messier than general mathematical

2

proofs, therefore this area of research is being pursued actively to provide solutions to

these problems.

In this thesis, an evaluation methodology was developed and a selected

verification system was evaluated for its ability to improve the assurance that systems

met certain security objectives. Systems are built to implement some security policy,

however the end product can be flawed. For example, security policies can be

inconsistent and the implementation of the system may not truly reflect the policies.

Formal specifications and verification tools can be used to achieve a more secure system

and to provide higher assurance that the system meets the requirements.

Several steps are followed during the assurance process to reveal any unspecified

functionality and to create verifiable protection:

(1) Establish a security policy

 (2) Develop a Formal Security Policy Model and prove that is meets its own

requirements

(3) Create a formal top level specification (FTLS)

(4) Formally map the FTLS to the Security Policy Model

(5) Develop a detailed design of the system

(6) Map the implementation or source code to the FTLS.

First, security policies are created to cover all aspects of protection of

organizational assets. Some of these policies are then represented in a Formal3 Security

Policy Model. This model is represented mathematically using precise mathematical

logic or a specification language that has formal well-defined semantics. This can be

done at several levels of abstraction. A verification system may be used to represent the

mathematical model of the security policy.

A formal top level specification (FTLS) is created using notations derived from

formal logic to describe assumptions about the world in which a system will operate,

requirements that the system will have, and a design to meet those requirements. The

3 Mathematical

3

FTLS may also be represented in the language of the verification system. A detailed

design of the system is developed from the FTLS using precisely defined semantics.

Proofs are then developed to show that the more concrete levels logically imply

the more abstract oriented levels. These proofs are repeatable by third parties. A semi-

automatic theorem prover is used to make sure that all of the proofs are valid. Lastly,

source code is mapped to the FTLS. This mapping is made possible by the design

process. The implementation effectively uses abstraction, layering, and information

hiding. The implementation should map to the FTLS so there is no unintended

functionality. The five levels used in Formal Methods can be seen in Figure 1.

The FTLS and the security policy model are both represented using the language

of a verification system. The verification system examined in this study will be evaluated

based on how well it can describe the security policy and system designs, the level of

assurance provided, and how easy it is to prove the design implements the policy. At

least one simplified version of this complex problem will be established and the

verification system will be evaluated based on this sample problem.

B. METHODOLOGY

 This thesis was divided into three phases: the desktop analysis phase, the hands-

on phase, and the evaluation phase. The initial phase also known as the survey or desktop

analysis phase, consisted of developing a list of potential verification system candidates

for evaluation and filtering out the verification systems that did not meet a set of broad

functional requirements. These requirements were used to construct the set of evaluation

criteria with which the “ filtering out” process was based. The selected verification

systems were the systems that best satisfied the evaluation criteria. The next phase was

the “hands-on” study where the empirical study of the eligible verification system was

conducted and the third phase was the evaluation of the system and the extrapolation of

the results to attempt to apply them to real life systems. In the empirical study, a

simplified version of a complex computer security related problem was constructed to

illustrate and exercise various problem-solving methods. One security model and one

FTLS was formed from this sample problem. Evaluation criteria was established so that

during the evaluation process, the results could be measured against the criteria. The

4

evaluation criteria included the previous criteria used in the “filtering out” process as well

as additional more specific functional criteria. The selected verification system to be

evaluated was run against the sample problem and the results were tabulated based on the

evaluation criteria. The purpose of the evaluation criteria was to attempt to reveal any

inconsistencies in the chosen verification systems such as the potential ability to prove a

false statement was true. The empirical study process can be summarized as follows:

(1) Establish a Security Policy

(2) Develop Mathematical Model of the Security Policy

(3) Represent this Security Policy Model in terms of the verification tool

(4) Develop Formal Top Level Specification (FTLS)

(5) Represent this FTLS in terms of the verification tool

(6) Map the FTLS to the Security Policy Model

(7) Attempt to use the tool to prove that the FTLS implements the policy

 In the third phase or the evaluation phase, conclusions were drawn on how well

the selected verification systems described the security policy and FTLS. Also,

information on how much assurance the selected verification systems provided and how

easy it was to prove that the design satisfied the policy was given at the end of the paper.

The final process consisted of determining whether the results of the evaluation process

were applicable to real world systems.

C. CONCLUSION

 Results of the empirical study should determine the usefulness of the verification

system for the sample problem. In addition, our work was driven by the need of another

project HANNAH (High Assurance Network Authenticator), which involves the creation

of a high assurance trustworthy authentication on a network. HANNAH requires the use

of a verification system, and therefore relies on the results of the evaluation of the

verification systems. This paper attempted to extrapolate from the results a conclusion

about the usefulness of a verification system for the verification of real world systems.

5

SECURITY POLICY

MATHEMATICAL MODEL OF THE
SECURITY POLICY

FORMAL TOP LEVEL SPECIFICATION

DESIGN OF THE SYSTEM

IMPLEMENTATION OF THE SYSTEM

Represent in PVS

Represent in PVS

Mapping of the
implementation to the FTLS

to the security policy

Figure 1. The Five Levels used in Formal Methods

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. CANDIDATE ELIMINATION FOR EVALUATION

A. INTRODUCTION

 Choosing which verification tools to use and exactly what support is offered from

each tool is not always clear. Therefore, there is a need to define criteria so that the tools

can be evaluated with respect to their various capabilities. This provides a means of

finding which tool is suitable for a specific research environment and what needs of a

particular project the tool satisfies. There is no ideal tool for a researcher in formal

methods, since the tools come in a vast spectrum of properties and qualifications.

Tools can range from simulators to model-checkers to decision procedures to

theorem provers as well as various combinations of these. Theorem provers can be

categorized as interactive provers, automated provers, logical frameworks, and inductive

provers. Proofs are intended to assert the correctness and provide feedback as well as find

errors. In this paper, fifteen verification tools have been preliminary evaluated based on

specific evaluation criteria ranging from the “age” of the tool to whether the tool supports

multiple levels of abstraction. These tools were chosen as candidates for this evaluation

study because of the large amount of information available relating to the tools, the tools’

differing qualities, and our specific interests in some of the tools. Here is the list of the

evaluated tools. Next to each tool are the tool’s homepage and a webpage relating to

information about that tool:

• ACL2 (A Computational Logic for Applicative Common Lisp)[Moo03]

 www.cs.utexas.edu/users/moore/publications/km97.ps.Z

• AutoFOCUS [Tum03]
 www.docs.uu.se/ftrtft96/program.txt

• Coq [Inr03]

 www-sop.inria.fr/oasis/personnel/ Simao.Desousa/appsem01.ppt

• Elf/Twelf [Pfe03]
 www.cs.cmu.edu/~rwh/theses/schuermann.pdf

• HOL (Higher Order Logic)[Iyo03]
 http://citeseer.nj.nec.com/hougaard94computability.html

• IMPS (An Interactive Mathematical Proof System)[Far03]

8

 http://imps.mcmaster.ca/doc/imps-overview.pdf

• Isabelle [Pau03]

 http://www.cl.cam.ac.uk/users/lcp/papers/protocols.html

• Nuprl [Cor03]

 citeseer.nj.nec.com/constable86implementing.html

• Otter [Arg03]

 www.cityauditorphilwood.com/warren/sectionf1.html

• PVS (Prototype Verification System)[Sri03]

 http://www-2.cs.cmu.edu/~svc/papers/view-publications-dk02.html

• SpecWare [Kes03]

 http://www.specware.org/documentation/4.0/tutorial/SpecwareTutorial.

 html

• SteP (Stanford Temporal Prover)[Sta03]

 http://www-step.stanford.edu/papers/railroad.html

• TAME (Timed Automata Modeling Environment)[Arc01]
 chacs.nrl.navy.mil/publications/CHACS/2001/index2001.html

• TPS (Theorem Proving System)[And03]

 gtps.math.cmu.edu/hug93.ps

• Vienna (Vienna Development Method)[Ibm03]
 www.sei.cmu.edu/publications/documents/ 88.reports/88.tr.026.html

• Z/Eves [Ora03]

 www.comp.nus.edu.sg/~dongjs/papers/icfem02dsw.pdf

B. EVALUATION CRITERIA
1. Age

The “age” of a tool can indicate the amount of available documentation of the tool

regarding improvements, strengths, weaknesses, purposes, and other information relating

to the overall value of the tool. Tools developed for trusted computing efforts may have

become obsolete and not been used in a long period of time. A tool can be currently

supported and employed, yet be relatively new which leads to concerns involving its

acceptability, usability, and proficiency. The more data collected from the research of a

verification tool, the more questions that can be answered about that tool. However, even

9

though a tool might be older, it may not be maintained currently, and this could lead to a

problem. Therefore, the “ideal” tool should be mature as well as be currently maintained

and supported. From the list of fifteen tools, the ones that have only been developed

within the last seven years are AutoFOCUS, Coq, Elf/Twelf, and TAME. However, out

of the complete list of tools, all are being used in some kind of research environment

currently at either a university (e.g Stanford), laboratory (e.g Carnegie Mellon

University), or a company (e.g ORA Canada). ACL2, Coq, Z/Eves, Isabelle, PVS, and

Nuprl all have current versions released in 2002. [Appendix A]The developers who are

currently supporting each tool can be found in Appendix L.

2. Purpose

A tool’s purpose plays a major role in determining how effective it will be when

used for a particular project. The key qualifications of the tool should be its ability to

ensure that the system satisfies some set of security properties as well as being able to

express software properties that are of our interest. If a tool is used exclusively for the

purpose of satisfying a particular mathematical concern, then its usefulness is

questionable. ACL2, PVS, Z/Eves are all general purpose theorem proving tools that can

be employed in almost any environment from small software projects to industrial-size

verification projects. HOL has a wide variety of uses from formalizing pure mathematics

to verification of industrial software. The Vienna Development Method (VDM) supports

the top-down development of software systems and STeP is a tool for the computer aided

formal verification of reactive systems. ACL2, PVS, Nuprl, Coq, and Isabelle all have the

ability to tackle real-world problems primarily due to the improved capabilities of

interactive systems. These systems are used for purposes other than verification. IMPS

provides organizational and computational support for the traditional techniques of

mathematical reasoning. TPS has facilities for searching for expansion proofs and

translating them into natural deduction proofs as well as constructing and translating

natural deduction proofs. However, its usage in real-world problems and describing

properties of software has not been documented. Otter’s main application is in abstract

algebra and formal logic and has been used to answer questions in the areas of finite

semigroups. However, it also deals more with mathematics and can be difficult to use to

illustrate the properties of software. [Appendix B]

10

3. Implementation Language

A tool whose implementation language can be run on many systems becomes a

more usable and effective tool, due to its portable nature. Therefore, if the tool’s

implementation language falls in the category of the more “popular” languages (e.g. ML,

Common Lisp, Java, or C), then the likelihood of it being able to run on a user’s system

is higher. This reduces the amount of effort that includes time, money, and research to

find an appropriate environment for the tool. All fifteen tools satisfy this quality, since

each tool’s implementation language is a “popular” language. [Appendix C]

4. Resource Requirements

A tool should be able to run on a specific platform that is currently available at a

user’s work environment. Otherwise, the cost and time to implement a suitable system

architecture for the tool increases significantly. Therefore, the tool should be able to run

on the more familiar operating systems (e.g. Windows and Unix). It is also advantageous

if the tool can be run on different platforms. ACL2, Otter, Isabelle, IMPS, Coq, TPS,

AutoFOCUS, Vienna, and HOL can all be run on Unix. TPS, PVS, Z/Eves, Coq, ACL2,

and SteP can run on Linux. Coq, Z/Eves, and HOL also run on Windows machines and

SteP, PVS, and Z/Eves also run on Solaris. Nuprl can run in any Common Lisp with

CLX. Therefore, all the tools run on common platforms, and some can even be run on

more that two different operating systems. [Appendix D]

5. User Friendly

The amount of effort and control that is required by the user to achieve a result

can determine if a tool is “user-friendly”. The degree of automation can affect the level of

difficulty of using a verification tool. Fully automatic tools may only need a “push of

button” and the user just has to wait for the answer. However, these tools are limited in

what they can verify. In addition, users still have to set prover parameters and generate

prover commands to pilot the theorem prover. Otter is fully automatic and has more than

a hundred Boolean and numeric parameters. For the prover to perform well, these

parameters have to be set up correctly, which increases the user’s time and energy spent

on operating the tool. Interactive theorem provers (a.k.a. “proof checkers”) are driven by

11

the human user, and therefore completing the proof is slower and requires more effort by

the user. However, interactive provers can achieve parts of a proof by itself, and the user

can receive assistance from people with expertise in using interactive theorem provers.

The key qualification that a “user friendly” tool possesses is the ability to use it without

having to know the language or mechanics of the tool in depth or training to become

fluent. The beginner should only need to know a basic knowledge of the tool and a small

repertoire of commands. TPS and SteP can be both proved automatically or interactively,

however TPS is quite primitive in automatic mode. ACL2 is a semi-automatic inductive

prover where the user’s responsibility is to understand the mathematical logic, be able to

construct a proof interactively, and have the mathematical insight of why the model has a

desired property [Define inductive prover]. Coq, Z/Eves, Nuprl, PVS, IMPS, and HOL

are all interactive theorem provers. Z/Eves can automatically perform large proof steps,

yet those steps can by finely directed by the user. With Nuprl, it is impossible to develop

an incorrect proof and users can write proof generating programs. PVS is much quicker

than HOL, and HOL users have to first learn some ML before they can effectively use the

tool. TAME, an interface to PVS, provides a way for users to create proofs using

“natural” or automatic proof steps, without having to learn the details of the PVS proof

steps. Also, TAME provides better user feedback in comparison to PVS. Lastly, the

descriptive language of Vienna is relatively difficult to learn when trying to employ the

tool, and Elf/Twelf is not suited for the interactive development of theories. When

deciding which tool to use based on whether the tool is “user friendly”, the ultimate

choice is dependent on the task at hand. The user may want fine control of the prover to

investigate proof strategies or proof failings. On the other hand, the task may require

beginners to use the tool right away, and therefore a tool that requires the least amount of

knowledge to use it is needed. Therefore, the significance of how “user friendly” a tool

basically depends on the needs of the user. [Appendix E]

6. User Interface

As a supplement to Section 5, the user interface is a more specific attribute that

helps to categorize the tool by ease of use. A “point and click” graphical user interface is

much simpler to use than an interface that requires the user to remember 1000 different

commands. Z/Eves and AutoFOCUS use a graphical interface and TAME also provides a

12

friendly user interface. Nuprl, SteP, and Otter use X-Windows, ACL2, Elf/Twelf, PVS,

IMPS, and HOL use Emacs, and Isabelle uses Ml as their user interface. Coq, however,

does not use any special interface such as Emacs and has a standard teletype-like shell

window. [Appendix F]

7. User Presentation Language

This section is also a supplement to Section 5. The user presentation language is

an important attribute of a verification tool and is entirely dependent on the user’s

preferences, background, and needs. If a user is not familiar with the tool’s presentation

language, then problems can emerge. The user may have to spend an indefinite amount of

time to become knowledgeable about the language and the likelihood of mistakes maybe

higher due to inexperience. It is best if the tool’s interface language is one that the user is

comfortable with and competent at using. We have not explored the information

regarding this specific criteria yet, therefore the various tools’ presentation languages will

be presented in Phase 2. [Appendix G]

8. Consistency of Specifications

Verification tools may be used to find errors and inconsistencies and can

determine the level of confidence of the correctness of a system. However, the tools

themselves should first be shown to be correct, otherwise what the tool outputs may not

be trusted. Any inconsistencies in the underlying logic of the verification systems such

as the potential ability to prove a false statement is true can be detrimental. Logic that is

more familiar to users leaves less room for unexpected inconsistency problems. A

specification is a list of properties that a user expects from a program. When a

specification includes axioms, the tool should allow new axioms to be added while

maintaining consistency with the original set. Managing inconsistent specifications

includes activities such as consistency checking, reasoning, and analysis. A consistency

checker can expose missing cases, unwanted non-determinism, and other application-

independent errors. Checking a specification for unwanted nondeterminism and missing

cases can be computationally expensive and complex otherwise. ACL2, Z/Eves, Nuprl,

PVS, TAME, Isabelle, and HOL all have some form of consistency checking. Whether

Coq and Elf/Twelf support consistency of specifications is unclear. More research will be

conducted due to inadequate information regarding consistency of specifications for the

13

remaining verification tools. However due to limited documentation, conclusions may

still not be apparent in Phase 2. [Appendix H]

9. Executable Specifications

When a specification is executable, a ‘feel’ for the system can be gained.

Executable specification allows one to demonstrate the behavior of a software system

before it is actually implemented. Therefore, specifications are constructive, since they

not only demand the existence of a solution, they actually construct it. Through

executable specifications, a user can modify and test specifications to achieve some

expected result. Each specific property can produce several examples that uphold this

property, and the user can then instantiate theorems via the generalization of these

examples. ACL2, Coq, Nuprl, Vienna, and HOL all support executable specifications.

Information on whether the remaining verification tools also possess this attribute will be

presented in Phase 2. [Appendix I]

10. Multiple Levels of Abstraction

Formal Specification and Verification Tools can be used to achieve a more secure

system and to provide higher assurance that the system meets the requirements. Several

steps are followed during the assurance process to reveal any unspecified functionality

and to create verifiable protection. The initial steps involve developing a security policy

and a top level specification of the system. Security policies are created to cover all

aspects of protection of organizational assets. Some of these policies are then represented

in a Security Policy Model. This model is represented mathematically using precise

mathematical logic or a specification language that has formal well-defined semantics to

specify the system. A verification tool may be used to represent the mathematical model

of the security policy. A formal top level specification (FTLS) is created using notations

derived from formal logic to describe assumptions about the world in which a system will

operate, requirements that the system will have, and a design to meet those requirements.

The FTLS is also represented by a verification tool. The FTLS and the Security Policy

Model are at different levels of abstraction. Therefore, the verification tool should

support multiple levels of abstraction so that one can prove that the top level specification

of the system satisfies the security model. ACL2, PVS, and HOL support multiple levels

14

of abstraction. Phase 2 will determine whether the other verification tools satisfy this

property or will remain questionable due to limited documentation. [Appendix J]

11. Expressiveness

The degree of expressiveness of a verification tool can determine its usefulness

when applied to more complex and difficult problems. A tool’s expressiveness can be

dependent on the logic it uses as well as its unique additional features. Logic, a formalism

for representing specifications, can be propositional, first order predicate, higher order,

temporal, etc. Higher order logic can express the more complicated properties in

comparison to first order logic. However, one should primarily address whether the tool

has the ability to sufficiently express properties of software systems, rather then its

underlying logic. ACL2, Z/Eves, and Otter can only be expressed with first order logic.

Coq, Nuprl, PVS, Isabelle, IMPS, TPS, TAME, and HOL are based on higher order logic.

Since ACL2 is programmed in the same logic it supports, this ensures that the logic is a

practical means of building large formal systems. Coq is an extension of the Calculus of

Constructions with inductive types and is well adapted to inductive reasoning. Elf/Twelf

is a logical framework (LF) based on predicative type theory. Z/Eves has unique

attributes that include an expressive formal specification and programming language,

practical automated deduction support, and mathematical soundness. One feature of

Nuprl is that the logic and system take account of the computational meaning of

assertions and proofs. PVS can introduce axioms freely and Isabelle can support

reasoning in several object logics. AutoFOCUS is based on simple temporal logic and the

logic underlying the semantics of Vienna is based on the Logic of Partial Functions. Due

to the various different attributes of each tool, once again there is no ideal tool, and

decisions should be based on the needs of the user and the task at hand. [Appendix K]

15

Table 1. Synopsis of Evaluation Criteria

C. PHASE 2: SELECTED CANDIDATE: PVS

 The amount of available documentation, the number of satisfied evaluation

criteria, and familiarity with the tool (See Appendices A - L), resulted in PVS being

selected as the verification system to be evaluated in the empirical study. Due to time

constraints, some verification systems could not be fully evaluated in the survey by

specific evaluation criteria such as multiple levels of abstraction, consistency of

Evaluation Criteria Summary Statement

Age A tool should be old enough and currently
maintained

Purpose A good tool should be versatile to verify a variety of
mathematical problems and be able to express software

properties

Implementation
Language

The more systems a tool’s implementation language
can run on, the better it is

Resource Requirements The larger number of common operating systems a
tool can run on, the better it is

User-friendly A good tool should take the guess-work out and
make its operation simpler and more flexible to the user

User Interface A GUI tool is better than a non-GUI tool

User Presentation
Language

A user should be familiar with a tool’s presentation
language

Consistency of
Specifications

A good tool should have consistency checking for
an entire set of tailorable specifications

Executable
specifications

A good tool should have the capability of
executable specifications, so the user can get a “feel” of

the system

Multiple Levels of
Abstraction

A tool should be able to support multiple levels of
abstraction to provide verification that the top level

specification satisfies the security policy

Semantics A tool’s underlying logic and other unique
functions can play a role in how expressive it is, however
the main concern should be whether the tool sufficiently

expresses the properties of software systems

16

specifications, executable specifications, and user presentation language. The proper

methodology for analyzing those tools in the empirical study is as follows:

• Express the mathematical model of the security policy by the verification

system

• Express the formal top level specification by the verification system

• Illustrate interlevel mapping between the formal top level specification

and the mathematical model of the security policy

A large amount of time is needed to learn a verification tool’s specification

language, its underlying logic, and especially its theorem proving capabilities. To be able

to evaluate a verification system to see if it supports multiple levels of abstraction,

consistency of specifications, and executable specifications as well as determining its

user presentation language requires an ample amount of time. Installation of the

verification tool, understanding and writing the various specifications, and proving the

required theorems are just some of the activities that need to be considered before proper

evaluation can be done.

D. CONCLUSION

ACL2 was also considered an eligible candidate for study since it satisfied most

of the evaluation criteria and also came with sufficient documentation. Due to time

limitations, the formal security policy model as well as the formal top level specification

(FTLS) could not be expressed in ACL2. However, a background of ACL2 containing

information about its theorem prover, underlying logic, and special features as well as a

brief comparison between PVS and ACL2 is provided in this paper. In future research,

ACL2 will be evaluated following the same methodology introduced in this paper to

evaluate PVS. A more in depth view of the process of our empirical study of a

verification tool can be found in Chapter VI, Section E.

17

III. FORMAL SECURITY POLICY MODEL

A. INTRODUCTION

Formal methods is a rigorous method of analyzing the trustworthiness of a

system. This technique is based on the use of models. With mathematical rigor, it can

establish certain properties about a system. The goal of formal methods in the

development of secure systems is to show that a security policy is consistent and

completely enforced by the modeled system. The goal of a security policy is to “protect

the confidentiality, integrity, and availability of the system against attacks by malicious

users and mistakes made by innocent users”[Sec98]. In order to provide an adequate level

of protection, a computer system has to enforce an appropriate set of policies and to

enforce them correctly. The security model is a precise and unambiguous statement of a

system’s security policy. It is an obvious representation of the policy. Some important

security models are The Bell and LaPadula model [Bel73], a confidentiality model and

the Biba model [Bib77], an integrity model, both of which are lattice models,

characterized by systems whose labels can be arranged in a lattice dominance hierarchy.

The formal security policy model is a high level model of the Reference Monitor

abstract reference and authorization functions. It is a mathematically precise statement of

a security policy. The formal model enumerates operations that can be invoked to

observe or modify that state. Also, it must be specific about critical technical elements

such as what preconditions must be true for the operation to begin, what post-conditions

will be true when the operation ends, and exactly what changes of the identified state will

occur. The formal model needs to be abstract where the system state is divided into

explicit and implicit parts. The specification describes pre- and post condition, and

effects, only on explicit state. Therefore, non-determinism is permitted (satisfying pre-

conditions is not a guarantee of execution). The formal model is kept as simple as

possible, and detail is added only when it is required to prove that the implementation

satisfies the initially stated requirements and security properties. As a consequence, the

specification may contain non-deterministic transitions; one purpose of refinement is to

resolve non-determinism in a way that is consistent with the initial properties and

18

requirements [Sec96]. The formal model is of a system interface, in other words it is an

abstract model of something real and it is written in a formal specification language.

[Irv03]

The formal security policy model consists of two parts:

• A general model of a system (system as a state plus a set of operations)

• A definition of a secure system – Each formidable clause in the security

policy is turned into a predicate that constrains the system in some way.

The overall definition of a secure system is one where all the constraints

are satisfied.

The model must represent the initial state of a system, the way in which the

system progresses from one state to another, and a definition of a “secure” state of the

system. To be acceptable as a basis for a TCB, the model must be supported by a formal

proof that if the initial state of the system satisfies the definition of a “secure” state and if

all assumptions required by the model hold, then all future states of the system shall be

secure.

B. NON-DISCRETIONARY ACCESS CONTROL

Non-Discretionary Access Controls are access controls based on rules and

information associated with the subject and object where the information is called a

security level and the levels are implemented as Labels. Label-Based policies in which

objects (files, directories, etc.) and users of a computer system have security labels can

confine malicious activities such as Trojan Horse Attacks. When a system supports

labeled data and labeled users it can reflect a real picture of what sensitive and non-

sensitive information there is on a system. Files are labeled with a fixed access class

value and users can execute at an access class level that is constrained by a user’s

clearance level. This label comparison is the basis of the access control. Mandatory

Access Control (MAC) is the most commonly used non-discretionary access control.

Under MAC, if a subject label and the object label cannot be compared then access is

denied, however if they are comparable, access is determined based on rules regarding

the relationship between the labels. [Sul03]

19

C. THE BELL AND LAPADULA MODEL

 The Bell and LaPadula model (BLP) [Bell73] has been the most influential model

of security over the past ~30 years. The policy in the BLP model and some of the

elements of the model are embedded within the Trusted Computing System Evaluation

Criteria (TCSEC) also know as the “Orange Book”[Sul03]. The Bell and LaPadula

model, a confidentiality model, has three main axioms:

• BLP Axiom 1

Simple-security property(SS): a subject s is allowed to read an object o only if the

security label of s dominates the security label of o

o No read up

o Applies to all subjects

• BLP Axiom 2

*-property: a subject s is allowed to write an object o only if the security label of o

dominates the security label of s

o No write down

• BLP Axiom 3

Discretionary Security Property (ds): A state satifies the “ds” property if for each

member of the current access set, the specified access mode is included in the

access matrix entry for the corresponding subject-object pair [Sul03]

o Allows an individual to extend access to an object to anyone that is

allowed to observe the document under the SS and the ‘*’ property

o Can only reduce the set of reachable states

The security policy that will be used in this paper will be very similar to the Bell

and LaPadula model. Each subject will be given a fixed security label and each object

will also be given a fixed security label.

20

D. CONSTRUCTING OUR FORMAL SECURITY POLICY
MODEL

1. Security Policy

• Property 1 (same as BLP Axiom 1)

Simple-security property(SS): a subject s is allowed to read an object o only if the

security label of s dominates the security label of o

o No read up

o Applies to all subjects

• Property 2

Property 2: a subject s is allowed to write an object o only if the security

label of o is equal to the security label of s (restricted special case of BLP

Axiom 2)

o No write down

• Property 3

Property 3 (Tranquility Principle): the static security level of a subject

may not change

Tranquility restricts the changing of security labels of subjects and objects. Strong

tranquility is where security labels of subjects and objects never change during an

operation. Weak tranquility is where security labels of subjects and objects never change

in such a way as to violate the security policy. Our model assumes strong tranquility. The

advantage is that the system state always satisfies security requirements, however the

disadvantage is that the system becomes less flexible.
2. The Basic Security Theorem

When writing a formal model or specification, “the general validation approach is

to state and prove theorems about the model that one intuitively expects to be

true”[Irv03]. Inconsistencies, unintended functionality, and mistakes in the specification

are uncovered when proving the test theorem is true. This theorem is appropriately

named the Basic Security Theorem or the Fundamental Theorem and takes the form of a

safety property or invariant. The real value provided by the Basic Security Theorem

21

(BST) is that the security can be demonstrated to be an inductive property where a

change in state of one object can affect the state of other objects which in turn effects the

whole system. “The specification process utilized in the BST can prove extremely

valuable when attempting to map the objects of an information system and the

vulnerabilities that are associated with these objects” [Kav02]. The BST provides the

following properties:

A system is secure iff

• Its initial state is secure

• Each action that starts in a secure state results in a secure state

 In our model, a secure state satisfies properties one through three.

3. Anatomy of our model

a. Elements

• Subjects: active entities (users, processes,…)

• Objects: passive entities (data, files, directories,…)

• Access Attributes {read, write}

• Security Levels (Top Secret, Secret, Classified, Unclassified)

b. Components

• Current Access set

• Object hierarchy

• Access matrix

• Security Level function – Mapping Subjects and Objects to

Security Labels

c. Properties

• The system should satisfy Property 1, 2, and 3 from above

d. Rules

• State transition operators

22

e. Theorems and proofs

• Justifications and proof

o Basic Security Theorem

E. THE MATHEMATICAL MODEL OF THE SECURITY
POLICY

• Each subject and object is assigned a security label

Let slSubject be a function from subjects to security labels (slSubject: Subject ->

SL) and slObject be a function from objects to security labels (slObject: Object -

> SL). In addition, let SL be a set of security labels. The security labels are

classified as {Top-Secret, Secret, Classified, Unclassified}. Assume that SL is

totally ordered and finite.

Subject SL

s1 TS

s2 S

.

.

.

si C

Table 2. Subjects to Security Labels

Object SL

o1 S

o2 TS

.

.

.

oj C

Table 3. Objects to Security Labels

23

• Let there be i subjects and a specific subject is represented by si

• Let there be j objects and a specific object is represented by oj

• Let M be a set of distinct modes of access (rd, wr) between a subject and

an object

• Let the current access authorizations (CAA) be a function from

 Subject X Object -> M. CAA represents the current access set of the

system.

• Example of the authorization matrix

 This authorization matrix represents the current access authorizations

(CAA) of subjects to objects and therefore the constraints on information

flow. The read privilege is represented by r and the write privilege is

represented by w.

 Object

 o1 o2 . . . oj

 s1 rw r rw

Subject s2 r rw r

 . r rw

 . rw rw

 . rw r r

 si rw rw r

Table 4. Subjects to Objects

• The Mathematical Model of the Security Policy

o CAA(si, oj, r) → slSubject(si) > slObject(oj)

o CAA(si, oj, w) → slSubject(si) = slObject(oj)

24

F. CONCLUSION

 A security policy is a statement of the security we expect the system to enforce.

The security policy model can represent a security policy or a set of policies. It focuses

on characteristics of policies by abstracting away detail. Generally, the security policy

model is stated in a formal language such as mathematics. Mathematical logic

separates and clarifies important components of the system. Given the complexity of

modern computer systems, it is no wonder that models of some form or another are used

in an effort to gain an intimate understanding of their inner workings [Kavanagh].

25

IV. FORMAL TOP LEVEL SPECIFICATION

A. INTRODUCTION

A formal top level specification (FTLS) is a top level specification that is written

in a mathematical language to allow theorems showing the correspondence of the system

specification to its formal requirements to be hypothesized and formally proven. It is also

a description of the system that shows those system changes that may interact with the

security properties of the system. The components of a classical FTLS include a

mechanism for describing the security portions of the system state and the state

transitions of the system that are security relevant. The goal of the FTLS is to prove that

if the system starts in a secure state, then it will never enter an insecure state using the

allowable state transitions.

The FTLS shows the actions of the system including all the exceptions and should

characterize inputs, outputs, and effects. There should be a coherent mapping between

inputs and outputs. Processing takes a set of inputs applies them to the current state and

results in outputs and effects. The effects are the changes to the internal state. It may be

the “side effects” of the state changes or error handling. Therefore, the elements of a state

include the effects that were created from processing. Processing also reports errors that

occur in the system that are not shown in the effects. Error checking and reporting is

important since in the normal case, state changes should not be made if there are any

errors in the system. In addition, these errors such as a subject accessing an object that

does not exist can lead to a potential covert channel. The FTLS is an abstraction of all the

processing and the effects. “Writing an FTLS is valuable because many behaviors of the

system that have an impact on security can easily be overlooked in a less formal

description. This is particularly true of behaviors that might be considered side effects of

operations that have some other primary purpose” [Sec96*].

When constructing a FTLS, an interface specification for the implementation

should first be developed. The implementation consists of a number of security-related

and non-security related entry points. A mapping should then be constructed from the

interface to the FTLS class. Each security related entry point in the implementation

26

should be mapped to a transform function in the FTLS which is turn should be mapped to

a transform function in the model. Therefore, the interface can be characterized in terms

of transforms. The non -security related entry points should be mapped to some

“no_operation” transform in the FTLS that should be mapped to a “no_operation”

transform in the model.

A system cannot make changes without inputs, therefore there are inputs

associated with each entry point. Specifying all the entry point accounts for all the

activities and state changes that can occur in that system. Therefore, the FTLS can

completely characterize the implementation system. Since mapping the implementation

to the formal security policy model can be rather difficult, the FTLS provides an

abstraction of the properties of the implementation that in turn can be mapped to the

properties of the formal security policy model(See Figure 2).

In conclusion, the formal top level specification of the TCB (Trusted Computing

Base) should accurately describe the TCB in terms of exceptions, error messages, and

effects. The FTLS should be an accurate description of the TCB interface and describe

the operations that the TCB provides at its interface and the information that those

operations return which are dependent on the internal state of the TCB. In other words,

the FTLS should specify accurately all operations and the effects of those operations on

all system structures that it might have modified and that are visible to the user. In

addition it should specify accurately the effects of those operations on all structures

associated with other subjects that can affect the error messages and return values that

those subjects will subsequently receive. The FTLS must support three main goals. First,

it must support a proof that the system design enforces the security policy. Secondly, it

must provide a basis for a catalogue of all covert storage channels. Lastly, it must provide

a criterion of correctness for the implementation [Rad87].

B. CONSTRUCTION OF THE FORMAL TOP LEVEL
SPECIFICATION(FTLS)

The FTLS is a complete description of the behavior of the system at a particular

level of abstraction. It is complemented by a user interface specification that gives a more

concrete description of the appearance of the system. Many implementation details of the

27

computer system are not represented in the FTLS. The process of developing the FTLS is

as follows:

1. Represent the State Elements of the Implementation as State
Elements of the FTLS

The security-significant state elements of the implementation of the computer

system may be viewed abstractly as processes, and memory blocks, and their

relationships. In a system, inputs are called requests and outputs are called decisions.

The system consists of all sequences (request, decision, state) with some initial state.

Each process and memory block will have a fixed associated security label. In addition, a

process will be associated with a set of memory blocks, each with a given access mode

(read or write) for that process. Each process will be identified through an identification

number appropriately labeled as ProcessID. Two processes can share the same set of

memory blocks and a process can be associated with a different set of memory blocks

and different access modes for those memory blocks at various times(See Figure 3).

2. Represent the Entry Points of the Implementation as Transform
Functions of the FTLS

With respect to this FTLS and Model, the security-significant entry points of the

computer system are those for the opening and closing of data objects (e.g., files).The

corresponding FTLS transform functions are adding a memory segment with a specific

mode to a process and deleting a memory segment with a specific mode from a

process(See Figure 3).

C. CONCLUSION

The security policy model and the formal top level specification are simple

models whose primary purpose is to illustrate the inter-level mapping problem.

Therefore, the level of detail in both these specifications will be expanded in future

research. For example, information flow is not modeled in our specifications since we

assume that it is handled elsewhere. This is the difference between this model and a non-

interference model. In our specifications, we model “open/close” of a subject accessing

an object, however we do not model “read/write”. Clearly, there are many aspects of our

policy that could be implemented in our model, however due to the limited amount of

time, our main focus was on demonstrating the inter-level mapping problem.

28

Security Policy Model

Formal Top Level Specification
(FTLS)

Implementation

Entry PointsInputs/Outputs

Mechanism Mechanism Mechanism

State
State Elements/

Security and Non-
Security Related

Check status of non security
entry points

Reflects State Changes

Mechanism MechanismMechanism

Transforms

no_op

no_op

Mapping of transform
function of FTLS to transform

function of the Security
Policy Model

Mapping of elements of the
state of the FTLS to

elements of the state of the
Security Policy Model

Mapping of entry points to
transform functions

Non-Security
Related Entry Point

Map State Elements of the
Implementation to State
Elements of the FTLS

Figure 2. Detailed Mapping of the Multiple Levels

29

... ...

...

... ...

MemBlock

...

Memory

1

MAXMEM

...

SetofMB

SetofMB

SystemMemBlocks

...

slMemBlock
MemBlock Label

... ...

MemBlockInstance

lb ub

MemBlock Mode

SysMem(fixed)

Each memory
block is a

member of
system
memory

Each memory
block in
system

memory is
valid

System
Memory is a

constant set of
valid memory

blocks

ProcessID
1

n

ProcessMB

Set of MemBlock

S
et

 o
f

M
em

B
lo

ck
In

st
an

ce

 … ...

Processes
ProcessID ProcessMB

… … ...

Request
ProcessID MemBlockInstanceAction

… …

slPr
ProcessID Label

Bold/Italics:
Function

.

.

.

Figure 3. Representation of FTLS

30

THIS PAGE INTENTIONALLY LEFT BLANK

31

V. THE PVS SPECIFICATIONS

A. INTROUCTION TO PVS

The Prototype Verification System (PVS) can be defined as a verification system

that provides an interactive specification/verification environment for writing formal

specifications and verifying formal proofs. This system lets the user interactively guide

the proof construction and provides powerful theorem-proving capabilities as well as an

expressive specification language. One of its most special features is the use of various

decision procedures for different logical domains.

1. Semantics

The semantics of PVS consists of classical higher-order logic and includes

predicate subtypes, dependent typing, and parameterized theories. The basic logic in PVS

is propositional logic extended with equational logic. Abstract data types such as lists and

trees can be defined and axioms can be introduced freely. Definitions, which allow for

conservative extension can be recursive and can include inductively defined predicates

and recursively -defined abstract data types. Standard PVS types include:

• numbers

• tuples

• arrays

• records

• functions

• sets

• sequences

• lists

• trees

32

2. Typechecking

 Typechecking is another feature offered by PVS that resolves name references,

introduces user-specified type conversions, and makes sure that the types are consistent

within the specification. The typechecker will generate proof obligations that may have to

be proved using the interactive prover, however most can be dismissed automatically.

These proof obligations allow refined typing to be asserted through subtyping judgments.

This provides strong checks on consistency and other properties. The type system of PVS

is undecidable, so typechecking is not completely automated.

3. Theorem Prover

PVS’ interactive theorem prover/proof checker consists of numerous proof

commands that can be placed into individual categories[1]:

• Annotation

• Control

• Structural

• Propositional

• Quantifier

• Equality

• Using Definitions and lemmas

• Extensionality

• Induction

• Simplification using decision procedures and rewriting

• Installation and Removal of rewrite rules

• Making type constraints explicit

• Model Checking

• Converting a strategy to a rule

33

 Execution of a certain command can create subgoals or complete a goal.

Therefore, the proof checker becomes the manager of the construction of the proof by

prompting the user to give adequate commands for a certain subgoal. For example, in

Figure 4, the goal is to prove sec_is_secure which is to prove that for a sequence of

states, every state in the sequence is secure. By induction, the goal to is split into two

distinct subgoals where the first is proving the initial state is secure. The second subgoal

is to prove that if n is not the initial state and by hypothesis the prior state was secure,

then all reachable states after the nth state are secure.

 seq_is_secure:

|-------
{1} FORALL n: st?(nth(seq, n))

Rerunning step: (induct "n")
Inducting on n on formula 1,
this yields 2 subgoals:
seq_is_secure.1 :
|-------
{1} st?(nth(seq, 0))

Rerunning step: (use seq_0_secure)
Using lemma seq_0_secure,

This completes the proof of seq_is_secure.1.

seq_is_secure.2 :
|-------
{1} FORALL j: st?(nth(seq, j)) IMPLIES st?(nth(seq, j + 1))

Rerunning step: (skolem!)
Skolemizing,
this simplifies to:

Figure 4. Proofs of Goals and Subgoals in PVS

PVS comes with a number of predefined theories (i.e.; proven “goals”) and its

theorem prover automates most of the low-level proof steps. The prover also consists of a

powerful collection of inference steps that include Boolean simplification, arithmetic and

equality decision procedures, and automatic rewriting.

34

IMP_triv_system_TCC1.1 :

 |-------
{1} 0 = rem(6)(0)

Rerunning step: (use "rem_zero")
Using lemma rem_zero,
this simplifies to:
IMP_triv_system_TCC1.1 :

{-1} rem(6)(0) = 0
 |-------
[1] 0 = rem(6)(0)

Rerunning step: (assert)
Simplifying, rewriting, and recording with decision procedures,

This completes the proof of IMP_triv_system_TCC1.1.

Figure 5. Using a Pre-defined Lemma from the PVS Prelude File

For example, in Figure 5, the goal is to prove that 0mod6 = 0 which is written 0 =

rem(6)(0) in PVS. The use command invokes lemmas with instantiation. Therefore, in

this example, a lemma called “rem_zero” defined as rem_zero: LEMMA rem(b)(0) = 0

for all positive integers b and found in the modulo_arithmetic pre-defined theory of PVS

is used. Since rem(6)(0) = 0 is found true, the assert command which uses decision

procedures to assert sequent formulas is able to prove the given goal. PVS can prove

automatically many results through its automation. Therefore, when dealing with more

complex problems, the user has the ability to concentrate on directing the steps to be

taken rather than the focusing on other details.

4. Concerns

 PVS does not support operator-defined theories, proof by contradiction, or

derived rules. Operator theories are theories with operators that handle equations of

associativity, commutativity, and identity efficiently. They can be important with respect

to rewrite techniques. Proof by contradiction is an indirect method of proof where the

proof assumes that the negation of a formula to be proved holds so that it can derive a

contradiction. Derived rules are rules that can be used in addition to the basic proof rules,

35

and each application of a derived rule can be replaced with a combination of applications

of the basic proof rules. Adding derived rules may be necessary for conveniently

embedding specification languages and their corresponding proof rules in the system, in

order to provide a theorem proving environment for the original specification languages

[Zha98]. PVS also lacks structures to support readability and ease of change. Therefore,

a beginning user of PVS may find it difficult to create adequate and worthy

specifications. Lastly, type checking is time critical since it is part of the interaction and

can take up to thirty minutes to type check for large contexts [Kroening].

B. UNDERSTANDING THE PVS SPECIFICATIONS
1. The Formal Semantics of the PVS Specifications

a. The Simple Type Theory
i. Introduction

PVS is a strongly typed specification language. Expressions are

checked to be well typed under a context that is a partial function that assigns either a

TYPE, CONSTANT, or VARIABLE. Bool and real are base types that are examples of

pretypes of the simple type theory. [A -> B] is defined as a function pretype from

domain pretype A to range pretype B. A type is a pretype that has been typechecked in a

given context.

The preterms of the language consist of the constants, variables,

pairs, projections, applications, and abstractions. Lambda abstractions have the form

LAMBDA(x: T), where T is a pretype and a is preterm.[Owr99]

ii. Contexts

A context is a sequence of declarations, where each declaration is

either a type declaration s: TYPE, a constant declaration c: T where T is a type, or a

variable declaration x: VAR T. Preterms and pretypes are typechecked with respect to a

given context. [Owr99]

b. Subtypes

Subtyping is one of the main features of the PVS Specification Language.

A predicate type in PVS is a function type where the range is the primitive type bool. A

predicate is a term that has a predicate type. Since the elements of the subtype {x: T | a}

36

satisfy the predicate λ(x: T): a, this is called a predicate subtype to distinguish it from

other forms of subtyping. Type equivalence and type correctness are undecidable. Proof

obligations are generated during typechecking and those obligations are the only source

of such undecidability. [Owr99]

 c. Dependent Types

In dependent typing, the type of one component of a product depends on

the value of another component, or the type of the range of a function varies according to

its argument value. An important degree of flexibility and precision is added to the type

system when using dependent typing. Dependent typing representation can be seen

below [Owr99].

• [i: nat, {j:nat | j < i}]

• [i: nat, {j:nat | j < i} -> bool]

2. Language of PVS Specifications

A PVS specification consists of a collection of theories. Each theory consists of a

signature for the type names and constants introduced in the theory, and the axioms,

definitions, and theorems associated with the signature.

a. Declarations

Entities of PVS are introduced by means of declarations that introduce

types, variables, constants, formulas, judgements, and conversions. Declarations

introduced in one theory may be referenced in another by means of the IMPORTING

clause.

i. Uninterpreted Type Declarations: T: TYPE

 Uninterpreted types support abstraction by providing a means of

introducing a type with a minimum of assumptions on the type. TYPE+ signifies that the

entity is nonempty.

 ii. Uninterpreted Subtype Declarations: S: TYPE FROM T

 K: TYPE FROM T has the same meaning as:

 k_pred: [t -> bool]

 k: TYPE = (k_pred)

iii. Interpreted Type Declarations: T: TYPE = nat

37

 Interpreted type declarations are primarily a means for providing

names for type expressions.

 iv. Enumeration Type Declarations: T: TYPE = {a, b, c};

Enumeration type declarations are of the form: enumeration: TYPE = {e_1,…, e_n}

where the e_i are distinct identifiers.

 v. Empty vs. Nonempty Types

When type checking, the following rules are hold:

• Constants declared must be of a nonempty type

• Uninterpreted type or subtype declarations defined by

TYPE can be empty

• TYPE+ is used for assuming nonemptiness for

uninterpreted type declarations.

• TYPE+ is used for assuming nonemptiness for

uninterpreted subtype declarations as long as the supertype

is nonempty.

 The type of an interpreted constant is nonempty, as the definition

provides a witness and interpreted type declarations defined by TYPE are not assumed to

be nonempty. An interpreted subtype declaration with a CONTAINING clause is

considered nonempty. There is no TCC generated since the CONTAINING clause is a

witness to the type.

 vi. Variable Declarations

 Variable declarations introduce new variables and associate a type

with them. So that binding expressions and formulas can be succinct, these variable

declarations provide a name an associated type.

 vii. Constant/Fixed Declarations

 PVS’ underlying logic is higher order and the term constant refers

to functions and relations as well as the usual constants.

 viii. Formula Declarations

 Axioms, assumptions, theorems, and obligations are formula

declarations that are introduced with the keywords AXIOM, ASSUMPTION,

38

THEOREM, AND OBLIGATION respectively. Axioms are not expected to have an

associated proof and are assumed to be true.

b. TYPES
i. Subtypes

A subtype is any collection of elements of a given type itself forms

a type. The supertype is the type from which elements are taken. The elements that form

the subtype are determined by a subtype predicate on the supertype. Much of the

expressive power of the language comes from the subtypes in PVS, however the cost is

making typechecking undecidable.[Owr01*] When typechecking is undecidable, this

leads to proof obligations (TCCs). These proof obligations can be discharged with the

assistance of the PVS prover. The TCCs provide a debugging mechanism which point

out flaws in the specification or what can be added for improvement. In the end, the

TCCs generated provide a helpful tool to potential users when trying to build a

specification that best represents their model.

ii. Function Types

 Function Types come in the form: X: x -> y

 iii. Record Types

 Record types have the form [# a1 : t1, …, an : tn #].

c. Expressions
 i. Boolean Expressions

 ii. IF-THEN-ELSE

 iii. Binding Expressions

 Binding expressions use keywords such as FORALL, EXISTS, or

LAMBDA and consist of operations, a list of bindings, and an expression.

 iv. Set Expressions

 Sets of elements of type t are represented as predicates in PVS. For

example, functions from t to real.

v. Record Accessors

 If x is of type [# k: int, l: nat #], an x component can be accessed

by x`k or k(r).

 vi. COND Expressions: The following expressions are the
same.

39

d. Theories
i. Theory Parameters

Theory parameters can consist of types, subtypes, constants, and

imported theories. When instantiating a theory within another theory, the specification

needs to provide actual parameters that substitute for the formals.

 COND

 A_1 -> B_1

 A_2 -> B_2

 …

 ELSE -> B_N

 ENDCOND

 IF A_1 -> B_1

 ELSIF A_2 THEN B_2

 …

 ELSEIF A_N-1 THEN B_N-1

 ELSE B_N

40

Table 5. Examples of the Language of PVS

PVS Language Example in Specifications
Uninterpreted Type Declaration State: Subject: TYPE+

Uninterpreted Subtype declaration FTLSSpec: ProcessID: TYPE+ FROM nat

Interpreted Type Declaration
State: Access: TYPE = [# u: Subject, f: Object, m:

Mode #], Access_State: TYPE = setof[Access]

Enumeration Type Declaration State: Mode: TYPE = {rd, wr}

Empty vs. Nonempty Types

FTLSSpec: MemBlock: TYPE+ = [# lb: Memory,
ub: {x: Memory | x >= lb} #] CONTAINING (# lb
:= MAXMEM, ub := MAXMEM #), ProcessID:
TYPE+ FROM nat

Variable Declarations FTLSSpec: p: var Processes

Constant Declarations State: addit, del: Action, no_op: setof[Action]

Formula Declarations FTLSSpec: AdditNotDel: AXIOM NOT addit =
del

Subtypes

FTLSSpec:
SystemMemBlocks: TYPE+ = {SetofMB |
ValidMemBlocks(sysmb)}CONTAINING {x:
MemBlock | x = (# lb := MAXMEM, ub :=
MAXMEM #)}

Function Types State: slSubject: Subject -> Label

Record Types
State: Access: TYPE = [# u: Subject, f: Object,

m: Mode #]

Boolean Expression State: AddnotDel: bool = NOT addit = del

IF-THEN-ELSE
FTLSSpec: SecureProcTransform(r: Request, Pr:
Processes): Processes = IF SecureRequest?(r)
THEN ProcTransform(r, Pr) ELSE Pr ENDIF

Binding Expressions

FTLSSpec: ValidMemBlocks(smb:
setof[MemBlock]): bool = FORALL(e, b:
MemBlock) : member(e, smb) AND member(b,
smb) => (e`lb > b`ub) OR (b`lb > e`ub) AND
NOT e = b

Set Expressions

FTLSSpec: SetofMB: TYPE+ =
setof[MemBlock]CONTAINING
{x: MemBlock | x = (# lb := MAXMEM, ub :=
MAXMEM #)}

Record Accessors

FTLSSpec: ValidMemBlocks(smb: SetofMB): bool
=
FORALL (e, b: MemBlock):
NOT e = b AND member(e, smb) AND member(b,
smb) =>
(e`lb > b`ub) OR (b`lb > e`ub)

41

C. ANATOMY OF THE FORMAL SECURITY POLICY MODEL
SPECIFICATION

1. Elements

a. Subjects

 Subject: TYPE+

b. Objects

Object: TYPE+

c. Access Attributes {read, write}

Mode: TYPE+, rd: Mode, wr: Mode

d. Security Levels (Top Secret, Secret, Classified, Unclassified)

See specification SLabels

 2. Components

a. Current Access set

The current access set defines the access state as a set of triples (subject,

object, access-attribute) where the “subject” has current “attribute” access to “object”. It

does not identify all the possible accesses, but only identifies one possible state which is

the one the system is in currently. In the State specification, an instance of Access_State

defines a current access set.

Access: TYPE = [# u: Subject, f: Object, m: Mode #]

Access_State: TYPE = setof[Access]

b. Object hierarchy

This consists of a parent-child relation structure on objects where the

security level of the parent dominates the security level of the child. This hierarchy will

not be given importance and therefore will not be represented in our formal security

policy model.

c. Security Level function

42

The security level function determines the security levels for subjects and

objects.

slSubject: [Subject -> Label]

slObject: [Object -> Label]

slSubject and slObject are functions that take a Subject and

Object(respectively) and return an associated fixed security label of that subject and

object(respectively). Each subject/object cannot have more than one security label

associated with it and the security label associations are fixed.

d. Access matrix

 The access matrix used in this paper is a simple representation of

subject/object accesses. As seen in Table 4, one column is for each object (including

subjects that are objects), and one row is for each subject. Each cell contains sets of

access attributes. The cell of the ith row and the jth column contains the access attributes

of the ith subject in the matrix (Sj) to the jth object in the matrix, (Oj). The current access

set is a subset of the access matrix.

SecureAccess(a: Access): bool =
 COND a`m = rd -> slSubject(a`u) >= slObject(a`f),
 a`m = wr -> slSubject(a`u) = slObject(a`f)
 ENDCOND

 SecState(st: Access_State): bool =
 FORALL (a: Access): member(a, st) -> SecureAccess(a)

Access_matrix: {a: Access | SecureAccess(a) }

 SecureAccess is a boolean function that defines whether a given access

relation is secure. Therefore, it checks to make sure that read and write modes are only

assigned when the properties of our security policy are satisfied. This is achieved through

a security label comparison between the subject and object (slSubject and slObject

respectively). Access_matrix is the set of accesses that are secure and represents the

super matrix. Since it is not needed in the specification, it has not been included in our

State specification. Access_State and Sec_State are subsets of Access_Matrix. SecState

and SecureAccess together represent the security policy.

43

3. Properties

 The system should satisfy Property 1, 2, and 3 from above

 4. Rules

a. State transition operators

• Altering current access

o Get access (add to the current access set)

o Release access (remove from the current access set)

 Transform(e: TransformInstance, st: Access_State): Access_State =
 COND e`ac = addit AND SecureAccess(e`a) -> add(e`a, st),
 e`ac = del AND st(e`a) -> remove(e`a, st),
 member(e`ac, no_op) -> st,
 ELSE -> st
 ENDCOND

In Transform, when adding an access to current access set, the access is

first checked to be secure, and then is added to the set of current accesses. When

removing an access from the current access set, the access first must be in the set of all

allowed accesses, and is then removed from that state. Otherwise, if the action of

altering current access is neither adding to or removing from the current access set, then

the access state(set of all accesses) remains the same. A transform function takes a

current access set (Access_State) and a TransformInstance(specifying the transformation

operation and the access involved) and returns a new current access set.

D. CONSTRUCTION OF THE FORMAL TOP LEVEL
SPECIFICATION IN PVS

1. Anatomy of our model

a. Elements
i. Memory Blocks

Memory is a nonempty set of natural numbers that is bounded by

some constant natural number represented as MAXMEM. A memory block is a nonempty

entity represented as MemBlock, a record whose elements consist of the lower and upper

bound values(located in memory) of the memory block. System memory blocks are

represented as a set of valid memory blocks(non-overlapping memory blocks). System

44

memory is then defined as a fixed set of system memory blocks. MemBlockInstance is a

record whose elements consist of a memory block located in system memory and its

associated access privilege.

MAXMEM: nat
Memory: TYPE+ = {mem: nat | mem <= MAXMEM}
CONTAINING MAXMEM

MemBlock: TYPE+ = [# lb: Memory, ub: {x: Memory | x >= lb}
#] CONTAINING (# lb := MAXMEM, ub := MAXMEM #)

SetofMB: TYPE+ = setof[MemBlock] CONTAINING
{x: MemBlock | x = (# lb := MAXMEM, ub := MAXMEM #)}

ValidMemBlocks(smb: SetofMB) bool = FORALL (e, b:
MemBlock):
NOT e = b AND member(e, smb) AND member(b, smb) => (e`lb >
b`ub) OR (b`lb > e`ub)

SystemMemBlocks: TYPE+ = {sysmb: SetofMB |
ValidMemBlocks(sysmb)}CONTAINING {x: MemBlock | x = (# lb
:= MAXMEM, ub := MAXMEM #)}

SysMem: SystemMemBlocks

MemBlockInstance: TYPE = [# mb : {x: MemBlock | member(x,
SysMem)}, m: Mode #]

 ii. Processes (Identified through a Process Identification

Number)

ProcessID is an element from the nonempty set of natural numbers.

A process is associated with a set of memory blocks each with a given mode, as well as a

process identification number. Therefore, a process is represented as an entity that takes

a ProcessID number and returns a set of memory blocks associated with that process

identification number. It is not a function since one process can have different sets of

memory blocks associated with it at various times.

ProcessID: TYPE+ FROM nat

ProcessMB: TYPE = setof[MemBlockInstance]

Processes: TYPE = [ProcessID -> ProcessMB]

45

 iii. Access Attributes {read, write}

 Mode: TYPE+

 rd: Mo de

 wr: Mode

 iv. Security Levels (Top Secret, Secret, Classified,

Unclassified)

 Refer to the Slabels specification

b. Components
i. Mapping to the Current Access Set

 The current access set in the formal security policy model was an

instance of Access_State. Process_State in the FTLSSpec, our specification representing

the FTLS, provides a direct mapping from the FTLS to the current access set. It defines a

function that takes a variable of type Processes and returns an Access_State where the

elements of the FTLS can be mapped to elements of the Access_State.

slMemBlock: [MemBlock -> Label]

slPr: [ProcessID -> Label]

 p: VAR processes

Process_State(p): Access_State = {a: Access | EXISTS (mbi:
MemBlockInstance, PID: ProcessID): a`u = PID AND a`f =
mbi`mb AND a`m = mbi`m AND member(mbi, p(PID))}

 ii. Mapping to the Access matrix and the Security Policy

 The comparison of security labels generated through the functions

slPr and slMemBlock of a process and a memory block determine read and write

privileges as stated in SecProcess. This Boolean function states that if all the memory

blocks associated with a specific process satisfy the security requirements of the policy,

then that process is secure. SecProcesses states that if all processes are secure, then the

current state is secure. This could be represented as a matrix of memory blocks to

ProcessID’s where the cells contain the access privileges.

46

SecProcess(p: Processes, pid: ProcessID): bool = FORALL (mbi:
MemBlockInstance | member(mbi, p(pid))):
 COND mbi`m = rd -> slPr(pid) >= slMemBlock(mbi`mb),
 mbi`m = wr -> slPr(pid) = slMemBlock(mbi`mb)
 ENDCOND
SecProcesses(pr: Processes): bool =
 FORALL (pid: ProcessID): SecProcess(pr, pid)

 iii. Level function

 slMemBlock: [MemBlock -> Label]

 slPr: [ProcessID -> Label]

slMemBlock and slPr are two functions that determine the security

labels of memory blocks and processes respectively.

c. Properties

• A process has read access to a memory block only if its security

label is greater than or equal to the security label of the memory

block

• A process has write access to a memory block only if its security

label is equal to the security label of the memory block

SecProcess(p: Processes, pid: ProcessID): bool = FORALL (mbi:
MemBlockInstance | member(mbi, p(pid))):
 COND mbi`m = rd -> slPr(pid) >= slMemBlock(mbi`mb),
 mbi`m = wr -> slPr(pid) = slMemBlock(mbi`mb)
 ENDCOND
d. Rules

• State transition operators

o Altering process table

 Add memory block to a process

 Remove a memory block from a process

47

If a request’s action is adding a memory block, then add that request’s

memory block to the request’s process. However, if a request’s action is deleting a

memory block, then remove that request’s memory block from the request’s process.

 ProcTransform(r: Request, Pr: Processes): Processes =
 COND ac(r) = addit AND SecureRequest?(r) ->
 LAMBDA (x: ProcessID):
 IF NOT x = r`p THEN Pr(x) ELSE add(r`mbi, Pr(x)) ENDIF,
 r`ac = del ->
 LAMBDA (x: ProcessID):
 IF NOT x = r`p THEN Pr(x) ELSE remove(r`mbi, Pr(x)) ENDIF,
 ELSE -> Pr
 ENDCOND

 SecureRequest?(r: Request): bool =
 COND r`ac = addit ->
 ((r`mbi`m = rd AND slPr(r`p) >= slMemBlock(r`mbi`mb)) OR
 (r`mbi`m = wr AND slPr(r`p) = slMemBlock(r`mbi`mb))),
 ELSE -> TRUE
 ENDCOND

E. IMPORTANT NOTES
1. Sec_theory provides the Basic Security Theorem

The theorem that gets proven at the model level is sec_transform. This theorem’s

overall meaning is that if that if the initial state of the system is secure, then it will never

enter a non-secure state given the operations (transforms) as defined. The model must

represent the initial state of a system, the way in which the system progresses from one

state to another, and a definition of a “secure” state of the system. Sec_theory is an

abstract representation of the Basic Security Theorem. By mapping State and FTLSSpec

to Sec_theory, this verifies that both these specifications satisfy the Basic Security

Theorem properties given their different defined states.

2. Prelude File of PVS

Specifications for many foundational and standard theories are preloaded into

PVS as prelude theories and are always available and do not need to be explicitly

imported. In our specifications we use the function add(x, a), remove(x, a), member(x,

a), and setof(x) which are already defined functions in the sets and defined_types theory.

The functions are defined as follows from the prelude:

48

• add(x, a): (nonempty?) = {y| x=y OR member(y, a)}

• remove(x, a): set = {y| x/= y AND member(y, a)} , /= represents not

equals

• member(x, a): bool = a(x)

• setof: TYPE = [t -> bool] where set: TYPE = setof[t]

3. Disjointness in our Specifications

In the State specification, the disjointness of memory blocks and their read/write

constraints is implicit, however in the FTLSSpec it becomes explicit.

4. Bus Error

A few times during the construction of our specifications, we would receive a

message stated “error signal bus” which did not allow us to work with our specifications.

To fix this problem, we had to delete all the files in the directory we were using except

for the specification files. Since the proof files were removed, we had to perform all the

proofs again. Since our specifications were kept simple, the proof construction was not

too time consuming. However, in cases of larger applications, this can be great problem

especially under time constraints.

F. INTER-LEVEL MAPPING OF THE FTLS AND SECURITY
POLICY MODEL USING PVS
 1. The Importing Function

When using the IMPORTING clause, the actual parameters provided are known as

a theory instance. An IMPORTING clause forms a relation between the theory

containing the IMPORTING and the theory referenced. If the entities are visible in the

IMPORTING clause at some point in the theory, then they are visible to every declaration

following. The IMPORTING clause can be used to map one specification to another

specification [Owr01]. The State theory is imported into the FTLS specification using

the IMPORTING clause as follows (See Figure 6):

State
State[Subject: TYPE+, Object: TYPE+, (IMPORTING SLabels) slSubject:
[Subject -> Label], slObject: [Object -> Label], Action: TYPE+, addit: Action,
del: Action, no_op: setof[Action], Mode: TYPE+, rd: Mode, wr: Mode]:
THEORY

49

FTLSSpec
 IMPORTING State[ProcessID, MemBlock, slPr, slMemBlock, Action, addit, del,
no_ops, Mode, rd, wr]

 2. Correspondence between State Elements of the FTLS and State
Elements of the Formal Security Policy Model

A ProcessID that identifies a process in the FTLS becomes a Subject in the

security policy model. A memory block represented as MemBlock in the FTLS becomes

an Object in the security policy model. As stated in Chapter V, Section D, Process_State

in the FTLS corresponds to the current access set of the formal security policy model.

The security level functions and SecProcesses of the FTLS correspond to the set of all

allowed accesses in the State specification,

 3. Correspondence between Transform Functions of FTLS and
Transform Functions of the Formal Security Policy Model

Addition of a memory block to a process (addit) and a removal of a memory

block from a process (del) in the FTLS, becomes addit and del respectively in the

security policy model. The action addit in the security policy model is the addition of an

access to the current access set, and del is the removal of an access from the current

access set. ProcTransform is the function that adds or removes memory blocks from a

process and therefore behaves similarly to Transform in the State specification.

 4. Code Correspondence

When implementing a security kernel, it is essential to keep the number of lines of

code to a minimum. This offers verifiable protection and allows the kernel to be analyzed

more efficiently. A minimized computer system is a system that only implements the

security-related features or requirements of the policy. Therefore, by limiting the amount

of code and mapping the implementation to the FTLS to the formal security policy

model, a proof of correspondence from the code to the policy can be developed.

Minimized systems provide much higher confidence against subversion. By having a

proof of correspondence, untended functionality and bugs can be recognized and fixed in

the implementation.

5. Functional Languages

50

When a functional specification is formal, the proof of correspondence shall also

be formal [Com03]. A functional style formal language’s only representation for an

operation is a function and there are only expressions and not statements. A functional

language is useful when writing specifications of models since it has a considerable body

of theory for automatically reasoning about functionally-expressed algorithms [Irv03].

Also, the combination of a functional programming language and theorem provers is

much more natural than the combination of sequential programming languages and

theorem provers. Thus, there are theorem provers that accept functional programming

languages as input [Kro02]. Future research will be conducted to explain or “interpret”

as to the approach for using a “functional” language for state machine modeling.

51

addit

Action

slObject

slSubject

Object

Subject

del

no_op

Mode

rd

wr

ProcessID

MemBlock

slPr

slMemBlock

Action

addit

del

no_ops

Mode

rd

wr

Formal Top Level Specification (ftls)

Formal Security Policy Model (State)
Specification

Figure 6. Inter-level Mapping

52

THIS PAGE INTENTIONALLY LEFT BLANK

53

VI. CONCLUSIONS

PVS can be used to specify and validate system requirements, verify that an

implementation meets the requirements and then help to refine the design in an effort to

improve system performance. A specification is formed by combining theories

describing various components and properties. Each theory is partitioned into

assumptions, definitions, axioms, and theorems. Benefits of formal specifications are that

they provide a higher level of rigor which enables a better understanding of the problem,

defects are uncovered that would likely go unnoticed with traditional specification

methods, identify defects earlier in the life cycle. Formal specifications enable formal

proofs that can establish fundamental system properties as invariants. They encourage an

abstract view of a system that focuses on what a proposed system should accomplish as

opposed to how to accomplish it.

Verification can be achieved by identifying correctness conditions and using PVS

to prove those correctness conditions. PVS has three features that allow it to detect

deviations from these correctness conditions[Fre02].

• It is based on a typed higher-order logic

• It supports specification using a form of conservative extension

• The theorem prover provides a powerful, extensible system for verifying

obligations

The process of adding definitions to an existing theory is called extension and is a

common mechanism for writing specifications. A theory is a conservative extension of

another if the extension adds axioms that only define properties over new operations.

Therefore, if a consistent theory is extended in a conservative manner, the resulting

theory is guaranteed to be consistent [Fre02]. In our specifications, we did not extend any

existing theories, however this feature is of great importance when trying to ensure

consistency of specifications.

Our methodology consisted of constructing specifications representing the formal

security policy model and the formal top level specification, mapping the FTLS to the

54

formal security policy model, and proving that the FTLS maps to the formal security

policy model. The main purpose of developing these specifications was to demonstrate

that PVS could support inter-level mapping between the FTLS and the formal security

policy model. Based on our survey, PVS satisfied the evaluation criteria as seen in Table

6 that was developed prior to beginning constructing our specifications. The information

used to establish our results in the survey was taken from available relevant

documentation about the verification systems. This included the homepages of each of

the verification tools, formal methods workshop summaries, and papers on projects that

used verification tools. The list of evaluation criteria below represent criteria that could

only be analyzed properly by developing our own specifications, providing inter-level

mapping, and proving the necessary theorems.

• User Interface

• Consistency of Specifications

• User-Friendly

• User Presentation Language

• Multiple Levels of Abstraction

• Expressiveness

In the next section, how well PVS represented both formal security policy

model and the FTLS will be analyzed based on the criteria seen above. From there, an

analysis of how easy it was to prove that the FTLS mapped to the formal security policy

model will be conducted. The last section will answer the question of what is the next

step in our empirical study. It introduces ACL2, the next verification tool to be studied,

gives a brief background and compares ACL2 to PVS, and lastly presents the

methodology for constructing our specifications (i.e. the functions and theorems

required).

A. EVALUATION OF HOW WELL PVS DESCRIBED THE
FORMAL SECURITY POLICY MODEL AND THE FTLS

 1. Expressiveness and User Presentation Language (Specification

 Language)

55

The specification language of PVS is based on classical, simply typed higher-

order logic, but the type system has been augmented with subtypes and dependent types.

Higher order logic provided a straightforward rigorous formalization of any mathematical

definitions. One appeal of type theory is that the rendering of higher-level mathematical

notions like functions is rather direct, whereas in set theory it relies on a few layers of

definition. Our specifications could be written concisely in this high level language. The

use of higher order logic and the type system allowed us to closely represent the original

requirements of the policy and an abstract of the implementation. The expressiveness of

the PVS specification allowed us to express the formal security policy model and the

FTLS succinctly. The use of PVS’s type system and its underlying logic allowed gave us

an important degree of flexibility and precision when constructing our specifications.

a. Predicate Subtypes and TCCs

Predicate subtypes provide a mechanism for defining new types using

comprehension. Given any predicate, s?, with domain, D, the predicate subtype(s?) is

defined as {d: D | s?(d)} [Fre02]. When we used predicate subtypes, it was possible for

the type checking system of PVS to automatically generate and verify the obligations.

Predicate subtypes can also be used to check statically for violations such as division by

zero or out-of-bounds array references, and can also express more sophisticated

consistency requirements. They are also used to constrain domain/range of operations and

to define partial functions. PVS does not make any assumptions about the cardinality of

the sets that interpret its types. Therefore, sets can be empty, finite, or infinite. When a

predicate subtype is used, the cardinality cannot be checked algorithmically and therefore

an “existence TCC” is generated. This “existence TCC” is a potent detector of erroneous

specifications when higher (i.e. function and predicate) types are involved [Rus98].

Therefore, in our specifications we added the CONTAINING clause to explicitly state

that a specific set of elements was nonempty. After adding this clause, the proof

obligations could be proved automatically.

b. Dependent Types

In PVS, function, tuple, and record types may be dependent in the sense

that some of the type components depend on earlier components. This can be important

when trying to prove a type check condition which can be seen in Part 2, The Importance

56

of TCCs. In this example, by adding the statement that specifies that if x is a memory

block element of MemBlockInstance then it is a member of system memory.

MemBlockInstance: TYPE = [# mb : {x: MemBlock | member(x,

SysMem)}, m: Mode #]

As stated before, dependent typing increases the amount of flexibility and

increases the precision of the specification. By using dependent typing, expressions can

be more succinct and easier to understand.

c. Higher-Order Logic

Higher-order logic is a logical system, usually a Type Theory, with

multiple ranges of quantification (usually called types) some of which contain sets or

functions. Higher-order logic ensures that the specification language applies to the widest

range of applications. In PVS, predicates and sets can be regarded as essentially

equivalent. All members of a set are of the same type in higher-order logic. Therefore,

PVS also allows set notation for predicates. The inclusion of lambda-abstractions allows

the definition of unnamed functions as is traditional in many languages. Most provers

support quantifiers, and a few go further. A higher-order syntax allows users to define

new variable-binding constructs such as least n P (n). Since PVS is based on higher-

order logic, we were able to write our specifications concisely. We were able to quantify

over predicates or properties in our specifications. In our specifications we were able to

use &, OR, =>, FORALL, EXISTS, etc..

A specification may be easier to code in higher-order logic, however, the

proofs can become more complex. In our specifications, since our specifications were

kept simple, our proofs were not complicated.

 2. Importance of The Type Checking System

Type Checking Conditions (TCCs) are produced when typechecking a

specification by checking the semantic constraints, determining the types of expressions,

and resolving names. Strategies are used to basically expand all definitions of the TCC

and add semantic information to the internal representation of the parser. Theorem

proving may be required to establish the type-consistency of a PVS specification and

57

these theorems that need to be proved are called TCCS. They can also be referred to as

proof obligations.

The assumptions in the higher level specification become proof obligations

(TCCs) in the lower level specification. For example, the assumptions in the State

specification become TCCs in the FTLSSpec specification. When evaluating the

computer system, the implementation should satisfy the assumptions stated in the FTLS.

Since implementation details are not known currently, the assumptions are written as

axioms in the FTLSSpec specification. Type checking conditions point out defects in the

specification and demonstrate what needs to be added to or deleted from a specification.

The PVS type checker can be considered as a debugger of the model.

a. Memory Block in System Memory

In the initial stages of developing our specification of the FTLS we

assumed that a memory block that was to be added or deleted from a process was already

in the system memory. However, proof obligations were generated from the definition of

ProcTransform. We had to show that when adding or deleting a memory block from a

process, the set of memory blocks associated with that process after the change would

still be a subset of system memory. The TCCs generated were:

% Subtype TCC generated (at line 50, column 46) for add(r`m, Pr(x))
% expected type ProcessMB unfinished
ProcTransform_TCC1: OBLIGATION FORALL (Pr: Processes, r:
Request): r`act = addit IMPLIES (FORALL (x: ProcessID): x = r`p
IMPLIES subset?[MemBlock](add[MemBlock](r`m, Pr(x)), SysMem));

% Subtype TCC generated (at line 53, column 46) for remove(r`m, Pr(x))
% expected type ProcessMB unfinished
ProcTransform_TCC2: OBLIGATION FORALL (Pr: Processes, r:
Request):
r`act = del IMPLIES (FORALL (x: ProcessID): x = r`p IMPLIES
subset?[MemBlock](remove[MemBlock](r`m, Pr(x)), SysMem));

Therefore, we had to add that when requesting to add or delete a memory

block from a process, the memory block itself would already be part of system memory

to our specification. The following line changes were made:

58

MemBlockInstance: TYPE = [# mb : MemBlock, m: Mode #]

became

MemBlockInstance: TYPE = [# mb : {x: MemBlock | member(x,

SysMem)}, m: Mode #]

b. Axiom Additions

When typechecking the State specification, the following TCCs were

generated:

Disjointness TCC generated (at line 46, column 6) for
 % COND a`m = rd -> slSubject(a`u) >= slObject(a`f),
 % a`m = wr -> slSubject(a`u) = slObject(a`f)
 % ENDCOND
 % proved - complete
SecureAccess_TCC1: OBLIGATION FORALL (a: Access): NOT (a`m =
rd AND a`m = wr);

% Coverage TCC generated (at line 46, column 6) for
 % COND a`m = rd -> slSubject(a`u) >= slObject(a`f),
 % a`m = wr -> slSubject(a`u) = slObject(a`f)
 % ENDCOND
 % proved - complete
SecureAccess_TCC2: OBLIGATION FORALL (a: Access): a`m = rd OR
a`m = wr;

% Disjointness TCC generated (at line 54, column 6) for
 % COND e`act = addit AND SecureAccess(e`ac) -> add(e`ac, st),
 % e`act = del AND st(e`ac) -> remove(e`ac, st),
 % member(e`act, no_op) -> st,
 % ELSE -> st
 % ENDCOND
 % proved - complete
Transform_TCC1: OBLIGATION
 FORALL (e: TransformInstance, st: Access_State):
 NOT ((e`act = addit AND SecureAccess(e`ac)) AND e`act = del AND
st(e`ac))
 AND
 NOT ((e`act = addit AND SecureAccess(e`ac)) AND
 member[Action](e`act, no_op))
 AND NOT ((e`act = del AND st(e`ac)) AND member[Action](e`act,
no_op));

59

 Therefore, based on these TCCs, we had to explicitly write some

assumptions that we had ignored but were of great importance in our model.

AddDelNotNo_Op: ASSUMPTION NOT member(addit, no_op) AND NOT
member(del, no_op)

AddnotDel: ASSUMPTION NOT addit = del

RdnotWr: ASSUMPTION NOT rd = wr

AddDelNotNo_Op provides the assumption that the actions addit and del

are not members of the set of actions that do not have any operations. AddnotDel and

RdnotWr provide assumptions of disjointness that addit and del are not the same entities

and read and write are not the same entities respectively. From typechecking the PVS

theories, we discovered the need for axioms or assumptions that needed to be added to

the specification. These then lead to properties of the FTLS and hence the

implementation that we might not have realized if we had not developed the

specifications.

PVS, in addition can provide counterexamples to original assumptions and

thereby suggest extra constraints that need to be formalized [Kro02]. By constructing a

PVS specification of our model, we have the advantage of using the PVS system to

analyze the model. This PVS system allows us to ask questions about our model, such as

the emergent properties of the model. These properties are not explicitly described via

the axioms of the model itself; rather, they are logical consequences of the axioms

[Pai01].

The type checker can detect a lot of common specification errors. Since it

has to be performed again after any change to the theory, it is part of the interaction of

developing a valid specification. It is the type checking system as well as the

expressiveness of PVS that allowed us to write concise and suitable specifications for

representing both the FTLS as well as the formal security policy model. The generation

of proof obligations provided us with ways to improve the specifications and the

specification language together with its underlying logic allowed us to write our

specifications in a flexible and straightforward manner.

60

 B. EVALUATION OF HOW EASY IT WAS TO PROVE THAT
THE FTLS MAPPED TO THE FORMAL SECURITY POLICY
MODEL

1. Decision and Inference Strategies

PVS provides a language for defining high-level inference strategies. The typical

strategies include those for instantiation of quantifiers, repeated skolemization,

simplification, rewriting, and induction. The use of these powerful inference steps allows

us to define a small number of flexible strategies that suffice for productive proof

construction [Rus96]. Strong decision procedures have a high degree of automation. For

example, the "grind" command is like automatic proving, even though this feature works

only for simple theorems. We still needed to guide it through the proof. It plays the role

of a proof verifier, rather than prover, since it just verifies small proof steps, rather than

generating the proof on its own. However, when proving TCCs in our specifications, the

grind command was highly useful. The “grind” command combines various commands

into one and allowed us to prove the proof obligations quickly. In addition, there were

times when the strategy for the proof was not apparent, and using the grind command

either simplified or automatically solved the proof. Since our specifications were kept

simple to illustrate inter-level mapping, the proofs themselves (TCCs and theorems) were

not difficult to prove. There were some instances however when only by attempting to

use a specific command could we determine its applicability to solving the proof.

In a theorem prover, the same axiom can be used in many different ways,

depending on the context. So a theorem prover is less predictable but more flexible than

a programming language such as Prolog. When we are searching for contradictions, we

don’t know in advance how the axioms are to be executed, so we use a theorem

prover. The “use” command invokes lemmas with instantiation. This allows us to use

existing lemmas, axioms, theorems, etc from the PVS prelude file or our own defined

assumptions, axioms, theorems, lemmas, etc. in our specification was used quite

frequently. Using this command helped us prove many of the proof obligations from our

specifications. An explanation of the various commands used in our proofs please refer

to [Sha01] and the proofs can be seen in Appendix M through O.

2. Interface

61

a. Usability

 The usability of PVS for larger proofs relies on the existence of powerful

procedures and strategies. Therefore, planning needs to be performed at a more intuitive

level. A theorem prover should have a set of commands that maps well to the

corresponding actions and is easy to understand and recall in order to facilitate plan

formation. With automation taking care of the low level proof, the complexity of the

built-in procedures means that the outcome of commands cannot be predicted and some

experimentation is nearly always required [Mer96]. Since PVS’s theorem prover is

interactive, we essentially had to know the strategy we were going to use in our proof

before we started. Otherwise, we could end up stuck in our proof construction by going

down the wrong path. There were help buffers that allowed us to view either one or the

whole range of possible commands and their correct usage. The interactive prover

introduced flexibility and we were able to use our own strategies to perform the proofs.

In other words, PVS supported “user-defined proof strategies”. For example, Czerny and

Heimdahl in “Using PVS to analyze hierarchical state-based requirements for

completeness and consistency” define their own strategy called consistent2 to prove that

their specifications are consistent seen in Figure 7.

62

Figure 7. User Defined Strategies in PVS

When constructing our proof, after each command is entered, the current sequent

is displayed. Therefore, we were able to get an overview of our progress made at each

command entered. It is also possible to view the current proof steps as formatted text

where branching is indicated by indentation which allows the tree structure to be clear.

This can be seen in the Figure 8 below [Mer96].

63

Figure 8. Interface of PVS theorem prover

b. Concerns with the Interface

 Since PVS cannot display standard mathematical symbols, ASCII

alternatives are used instead. The method of best representing mathematics and logic is

up to the user. “Pretty-printing” as the name states helps specifications become more

organized and easier to read. Insertion carriage-returns and indentation are used to make

the structure of the specification more readily apparent. However, how “pretty” the

specification becomes is once again a decision made by the user. A problem with

“pretty-printing” is that it removes comments made in the specification. So, even though

it helps to structure the specification, it can make the specification harder to understand.

c. Implementation Language

When using the help buffers and viewing the theorem prover interface, the

descriptions and messages are somewhat cryptic unless the user is familiar with the LISP

programming language. Proof commands are in Lisp syntax, where the first term

64

identifies the command, the second generally indicates those formulas in the sequent to

which the command should be applied, and any required PVS text is enclosed in quotes.

However, even though not all of us were familiar with the Lisp language, we still were

able to understand the proof commands and the interface of the theorem prover.

Therefore, the fact that PVS’s implementation language is Common Lisp may not be a

hindrance to users who are not familiar with the language.

3. The Inter-level Mapping Problem

In the specifications, State is mapped to Sec_theory. This mapping supports the

Basic Security Theorem principles where every state in the sequence of states of the State

specification is secure. The main goal however is to map the FTLSSpec specification to

the State specification so that the following occurs (See Figure 9).

65

Assumptions

1. Initial state in a sequence is secure
2. The next state in a sequence results

 from a transform operation of the
 previous state

3. If a state is secure, then every state
that results from a transform operation
on that state is secure

 Theorem
 Every state in the sequence is secure

 1. Define a state in this specification

2. Define a sequence of states
3. The assumptions from Sec_theory become

 proof obligations(TCCs) in State
 4. Add the necessary assumptions to prove
 the proof obligations

1. Map the elements and components of the
FTLSSpec to the elements and components of
State and be as concise and precise as possible

2. The PVS system should automatically construct
the proper mapping theorems. In other words, the

 TCCs generated should be the mapping theorems
 that provide the inter-level mapping between the

 FTLSSpec and State
 3. The proof that every state of the FTLSSpec is secure

becomes a trivial proof

Figure 9. Ideal Inter-level Mapping Construction

Sec_Theory(arbitrary
sequence)

State(defined sequence of
states)

FTLSSpec

66

 a. Initial Version of the Specifications

When importing a higher level theory into a lower level theory using the

IMPORTING clause in our specifications, type-checking conditions (TCCs) are

generated. These TCCs were to make sure that the assumptions stated in the higher level

theory are satisfied in the lower level theory. The assumptions of the higher level theory

become proof obligations in the lower level theory as stated before. However, a problem

arose in trying to prove those type-checking conditions in an earlier version of our

specifications. In the earlier version, System was in between the State and FTLSSpec

levels. The following parameter list of the theory System was used to try to map the

FTLSSpec theory to the System theory which in turn needed to map to the State theory.

System[Subject: TYPE+, Object: TYPE+, (IMPORTING SLabels)
slSubject:[Subject -> Label], slObject: [Object -> Label], Action:
TYPE+, addit: Action, del: Action, no_op: setof[Action], Mode: TYPE+,
rd: Mode, wr: Mode, (IMPORTING State[Subject, Object, slSubject,
slObject, Action, addit, del, no_op, Mode, rd, wr]) fs:
sequence[Access_State]]: THEORY

To be able to prove the TCCs generated from importing the State theory,

we needed to be able to use the assumptions in the System theory. These assumptions

were the same as the assumptions of the current State theory (Appendix M). However,

the problem was that we could not use the assumptions of our System theory since they

were defined after the IMPORTING clause was introduced. The IMPORTING clause

functions by only using the information prior to its use. Since PVS did not allow us to

embed assumptions in the parameter list, and we wanted the format of the parameter to

remain the same to provide inter-level mapping, we were unable to prove some of type

checking conditions. Solutions to this problem are left for future work. The current

version of the inter-level mappings between our specifications can be seen in Figure 10.

67

Assumptions
1. Initial state in a sequence is secure
2. The next state in a sequence results
 from a transform operation of the
 previous state
3. If a state is secure, then every state

that results from a transform operation
on that state is secure

 Theorem
 Every state in the sequence is secure

 1. Define a state in this specification

 2. Define a sequence of states
 3. The assumptions from Sec_theory

 become proof obligations(TCCs)
 in State

4. Add the necessary assumptions
to prove the proof obligations

.1. Express a correspondence of the elements and
 components of the FTLSSpec to the elements

 and components of State explicitly

Figure 10. Current Inter-level Mapping Construction

b. Mapping of Sec_theory and the State Specifications

Using the IMPORTING clause, we were able to map State to Sec_theory

as seen in Figure 10. Proofs of the TCCs generated from this importation can be seen in

Sec_Theory(arbitrary
sequence)

State(defined sequence of
states)

FTLSSpec

Mapping

Expressions for
Mapping
Purposes

68

Appendix M. The IMPORTING clause was used to map State to Sec_theory as seen

below. In the State specification, the names of the parameters remained the same,

however the parameters were defined in State.

Sec_theory
Sec_theory[Access_State: TYPE, TransformInstance: TYPE, seq:
sequence[Access_State], SecState:[Access_State -> bool], Transform:
[TransformInstance, Access_State -> Access_State]]: THEORY

State
IMPORTING S ec_theory[Access_State, TransformInstance, seq,
SecState, Transform]
c. Expressions for Mapping the FTLS Specification to the State
specification

Since the system was unable to construct the necessary mapping theorems

from our current specifications, we constructed components explicitly in FTLSSpec that

corresponded with the components of the State specification. We were able to form a

correspondence between the elements of the specifications using the IMPORTING clause

as illustrated in Figure 6. Refer to Appendix M and N to view the specifications. Figure

11 is a diagram of the corresponding components of FTLSSpec and State as well as

questions that arose when trying to provide inter-level mapping. Future research should

be conducted so that the mapping between components is not explicitly stated and ideally

the inter-level mapping should be performed as in Figure 9.

69

 FTLSSpec State

Figure 11. Inter-level Mapping Problem

Since most of our research time was spent on building the frameworks of

the formal security policy model specification and the FTLS, the inter-level mapping

could not be constructed since time was limited. However, whether this problem is based

on the PVS system, the frameworks of our specifications, or inter-level mapping features

of PVS that were unaware to us remains questionable. Since inter-level mapping

between FTLSSpec and State could not be constructed, we were unable to analyze how

easy it was to prove the mapping. Finding a solution to the inter-level mapping problem

as well as analyzing how easy it is to prove that the FTLS mapped to the formal security

policy model becomes a problem to answer in future work.

Process_State Access_State

ProcTransform Transform

Proc_Trans_Inst TransformInstance

SecProcesses SecState

How do
Processes and
Access_State

correspond with
each other?

How do
SecProcesses
and SecState

correspond with
each other?

SecProcess SecureAccess
How do

SecProcess
and

SecureAccess
correspond
with each

other?

Mapping
explicitly stated

When using the IMPORTING clause to map MemBlock to Object and
Mode to Mode in the FTLSSpec and State, there was no association
given between MemBlock and Mode. However, in the FTLSSpec,

there is an association. This presents a problem when trying to
develop inter-level mapping.

70

C. LEVEL OF ASSURANCE PROVIDED

Increasing the level of assurance that a system provides can be achieved by

reducing requirements errors by applying formal methods during the requirements phase.

A formal method is a development method based on some formalism, such as a formal

specification notation or a formal analysis technique. A formal requirements specification

can reduce errors by reducing ambiguity and imprecision and by making some instances

of inconsistency and incompleteness obvious. Formal analysis can detect many classes of

errors in requirements specifications, some of them automatically. Formal specifications

as a system description clarify requirements and high-level design, articulate implicit

assumptions, identify undocumented or unexpected assumptions, expose flaws, and

identify exceptions. Error detection techniques can be seen below. PVS supports all of

the features below except for providing executable specifications.

• Inspection of the formal specification (manual)

• Parsing for syntactic correctness (automated)

• Type-checking for semantic consistency (automated)

• Simulation/animation based on the specification; This is only possible if

the language provides an execution option

• Theorem proving and proof-checking for logical anomalies (interactive)

1. Consistency within each Specification

The purely definitional style adopted and the strong typing mechanisms of PVS

gave us strong assurance concerning the internal consistency of the specifications. If all

the expressions that can be proven in our specification using the underlying logic are true

then the logic is sound. The type checking conditions to be proved are generated to assure

sound definitions and demonstrate semantic consistency. The type checking system

offers some logical consistency from the type checker, however most of it is dependent

on the manual inspection by the user. Completeness is when the specification identifies

all contingencies and specifies appropriate behavior for all cases. Verification tools are

used as an adjunct not a replacement for standard quality assurance methods. Formal

methods are not a panacea, but can increase confidence in a system’s reliability if applied

71

with care and skill. PVS, a verification tool is very useful for consistency checks, but

cannot assure completeness of a specification. Developing consistent and complete

specifications is a complex, time consuming, and difficult process. In many applications,

the effort required to make the specifications both consistent and complete is not

warranted, and a consistent set of specifications is often sufficient [Hei96].

2. Consistency between the FTLS and the Formal Security Policy Model

Whether the FTLS was consistent with the Formal Security Policy Model remains

unanswered since the proper inter-level mapping theorems that provide this consistency

checking could not be constructed. If the appropriate mapping theorems between these

two specifications could be developed, then one could verify that there were no

inconsistencies between the abstract design of the implementation (FTLS) and the State

specification. Also, since the system was unable to construct inter-level mapping from

our specifications, we could not show a proof of correspondence between the FTLSSpec

and State. Otherwise, bugs and unintended functionality could become known and then

corrected early in the design phase of the system. Currently, the level of assurance is low

since one can only verify the semantic and logical consistency within a specification. In

addition, since PVS does not provide executable specifications, one cannot simulate the

specifications to see whether the required properties hold or to really analyze whether

there is logical consistency.

D. FUTURE WORK
 1. Solving the Inter-level Mapping Problem

Future research should modify our given specifications so that they satisfy the

ideal inter-level mapping construction as seen in Figure 9. Whether this problem is

solvable remains questionable. Our empirical study should be applied to the next

qualified verification system, ACL2, and comparisons should be made to determine the

most suitable system for specific applications.

 2. Background of A Computational Logic of Applicative Common Lisp
(ACL2)

a. Introduction

ACL2 can be used as a programming language, a specification language, a

modeling language, a formal mathematical logic, a semi-automatic theorem prover, and

72

more. It basically is a mathematical logic together with a mechanical theorem prover to

help one reason in the terms of the logic. ACL2 is programmed in and supports the logic

of a large applicative (“side effect free”) subset of Common Lisp. In other words, ACL2

is a very small subset of full Common Lisp. Roughly speaking, a language is applicative

if it follows the rules of function application [Moo03].

b. Semantics

ACL2’s underlying logic is quantifier free first order logic. The semantics

of ACL2 include macros that can be extended with a single-threaded state, fast

applicative arrays, and property lists. The macro facility of Common Lisp can be used to

make specifications more succinct and easier to grasp. The formal models that are written

in ACL2 are executable except when there are undefined functions. It is possible to

introduce an undefined function whose value is constrained to be some object satisfying a

certain formula, provided such an object exists. This then extends the ACL2 logic to full

first order logic. In addition, it is possible to introduce a function whose “body” is a

universally (or existentially) quantified formula [Moo03].

ACL2 supports five disjoint kinds of data objects[Kau02]:

• Numbers: 0, -123, 22/7, #c(2 3)

• Characters: #\A, #\a, #\$, #\Space

• Strings: “This is a string.”

• Symbols: nil, x-pos, smith::x-pos

• Conses – (1 .2), (a b c), ((a . 1) (b . 2))

The primitive functions of ACL2 can be categorized as:

• Boolean (e.g. (and p1 p2…) : Logical conjunction operator

• Arithmetic (e.g. (+ x y) : Addition

• Characters (e.g. (char – code char) : Convert character to integer

• Strings (e.g. (length str) : Length of string (or list)

• Symbols (e.g. (symbol-name sym) : Name (string) of symbol

73

• Cons Pairs and Lists (e.g. (cons x y) : Construct an ordered pair

c. Guards/Other Features

ACL2 presents itself to the user as “read-eval print loop” where it

repeatedly reads an expression from the user, evaluates it, and prints the result. The

expressions typed into the read-eval print loop are called top level expressions and these

expressions are not allowed to contain unbound variable symbols. ACL2 provides the

ability for functions to compute and return multiple results and permits the use of

declarations in certain expressions. These declarations are used to inform the Lisp

compiler and the ACL2 system about pragmatic issues. In addition, the Definitional

Principle allows the user to add axioms defining new function symbols, under conditions

that insure that the soundness of the logic is preserved. ACL2 includes the use of

packages, encapsulation, books, and theories that provide name and rule scoping. Since

ACL2 is a programming language where hints and prover advice can be expressed and

codified. ACL2 provides a powerful type-like mechanism called “guards” which can be

used to assure that functions are “well typed”. Guard verification provides mechanized

support for proving that functions are used in compliance with Common Lisp.

d. Theorem Prover

The automatic theorem prover is driven by an incrementally constructed

database of previously proved theorems. Decision procedures are for propositional

calculus, equality, and linear arithmetic. There are integrated heuristics for congruence-

based rewriting, backwards and forward chaining, destructor elimination, generalization,

and induction. In addition, there are user supplied meta-theoretic simplifiers, an elaborate

hint mechanism including the use of Binary Decision Diagrams (BDDs), and a built-in

interactive “proof checker”. The ACL2 prover is powerful and versatile with respect to

problems couched in its “native” domain of recursively defined functions[You96*]. Since

ACL2 is both an executable programming language and a specification language for the

theorem prover, it allows the theorem prover to argue about its own code [Kro02].

e. Concerns

ACL2 does not support the hierarchical organization of theories, operator

theories, and derived rules [Zha98]. It also is not based on higher order logic, and

74

therefore may not be suitable for a wider range of applications. Since ACL2 is not only a

programming language but also a logic, there are some restrictions on function

definitions. For example, “global variables” are not allowed, any function used in the

body other that the ones being defined must have been introduced earlier, and recursive

definitions must be proved to terminate. While many programming languages have

expressions, statements, blocks, procedures, or modules, etc., ACL2 just has expressions.

The lisp syntax is sometimes a major stumbling block for many new users of ACL2,

however it has the advantages of being completely unambiguous without any ancillary

precedence rules [You96].

3. ACL2 vs. PVS

a. Expressiveness
i. Types

The primary goal of a type system is to ensure language safety by

ruling out all untrapped errors in all program runs [Car97]. The declared goal of a type

system is usually to ensure good behavior of all programs, by distinguishing between

well typed and ill typed programs. Types and subtypes correspond to basic constructs of

specification languages and programming languages. Support for types and subtypes is

preferable and there are many different kinds of subtypes.

• Predicate subtype

• Dependent subtype

• Syntactic subtype

• Semantic subtype

Of all languages, PVS has the most expressive type system that

consists of a base type and a predicate. The base type is a basic type such as the number

type or an enumerative type, or combinations of basic types (tuples, records,…).

Subtyping helps for writing understandable and concise specifications. ACL2 does not

support a type system and its syntax is that of Common Lisp. Lisp derives much of its

expressive utility from its weak typing, even though considerable execution efficiency

can be gained from type declarations [You96*].

75

ii. Underlying Logic/Syntax

 Higher order logic ensures that the specification language applies

to the widest range of applications. The use of a more restrictive logic such as first order

logic means that more effort sometimes must be invested in the specification but is often

repaid with increased automation in the proof. In addition, higher order logic is elegant

but seldom necessary, and higher orderness may be a notational convenience[You96*].

The elegance gained in specification must be weighed against the potential additional

proof burden. Most lambda terms can be translated directly into recursive functions

though often at the cost of additional parameters. In addition, sometimes the appropriate

recursive function serves the purposes of a quantifier. ACL2 is essentially quantifier-free,

first order logic. It is not as usable as PVS and has limited or no support for arbitrary

quantification. PVS offers higher order functions, strong typing, lambda abstraction, and

full quantification. These uses can easily be translated into simpler logical constructs that

facilitate more automated proof discovery.

The syntax of ACL2 is that of Common Lisp, macros however

make this syntax extremely malleable. ACL2 has both recursive and induction function in

its syntax. ACL2 supports the macro facility of Common Lisp. Macros provide a

powerful abbreviation facility and can be used to make specifications much more

succinct and easier to grasp [You96*]. All the functions evaluate their arguments. ACL2

also supports the introduction of axiomatically constrained function symbols that have no

executable counterpart. In ACL2, a macro package can be introduced to add enumerated

types to a specification. Record structures can be easily represented in ACL2 using the

available def-structure macros. Also, ACL2 integrates its untyped logic with guards to

insure compliance with efficiently executable raw Lisp implementations. ACL2

provides execution of definitions and encourages concrete, efficient models. PVS cannot

simulate machine execution conveniently but supports higher-order logic and encourages

specifications unburdened by irrelevant detail.

b. Theorem Prover

The proof of a theorem is an unbroken chain of inferences that connect

that theorem to axioms. Both ACL2 and PVS support the ability to do backward proofs,

76

forward proofs, proof by rewrite, proof by induction, and proof by cases. In addition,

ACL2 is able to perform proofs by contradiction. Theorem proving tools that are based

on first order logics become very restrictive, therefore tools that are based on higher order

logic such as PVS can be more desirable

ACL2 provides several automatic proof techniques that the user programs

by proving theorems and then adding these theorems to the theorem prover database.

The style of these proofs has an important benefit that is proof robustness. Since these

proofs are “automatic”, dramatic changes in the specification or system does not imply

that the proofs will change drastically. Theorem provers that are based on first-order

quantifier free logic are appropriate tools when working on large systems that have had

corrected problems due to the mostly automatic approach to guiding the theorem prover.

PVS has support for automated reasoning, namely a simple rewriting

system and a facility for constructing new proof commands. PVS can also be used to

reason about computer systems in a robust style. Realistic proofs require robustness and

PVS is capable of a proof style that fosters resilience in proofs about computer systems

[Wil97].

E. CONCLUDING REMARKS

Our empirical study of PVS paved the way for future research of other

verification systems. The methodology we used for the evaluation of PVS can be

followed for the analysis of the next selected verification system. Since ACL2 was our

second choice for our empirical study due to the relevant documentation, satisfied

evaluation criteria, and our familiarity with the tool, its evaluation is the next step in

future research. In the previous sections, ACL2’s background and comparisons with PVS

has been introduced. In this section, the proper methodology for an empirical study of

ACL2 will be provided as well as a table summarizing the features of ACL2 that should

be observed in the research process. The summation will be based on the features of PVS

in comparison to ACL2. This is due to the fact that the main purpose of our work was to

introduce a verification system that would be suitable for the project HANNAH (High

Assurance Network Authenticator), which involves the creation of a high assurance

trustworthy authenticator on a network. The policy we have used in our paper is a

77

simplified version of a complex policy that may be used when implementing HANNAH.

HANNAH requires the use of a verification system, and therefore relies on the results of

the evaluation of the verification systems. Therefore, more verification systems need to

be evaluated to figure out the most appropriate verification system that should be applied

to HANNAH. By following the same methodology used in our study, a better analysis

can be conducted to compare the different verification systems.

1. Methodology for Future Work

First, our formal security policy model should be used when constructing the

formal security policy specification. When developing the specification in the language

of ACL2 that is supposed to represent the formal security policy model and the FTLS,

there are specific elements, functions, theorems, etc. that are required.

The formal security policy specification should have the following elements:

• Subjects

• Objects

• Access Attributes {read, write}

• Security Levels (Top Secret, Secret, Classified, Unclassified)

The formal security policy specification should have the following components:

• Current Access set

• Access Matrix

• Security Level function – Mapping Subjects and Objects to Security

Labels

The formal security policy specification should have the following properties:

• A subject s is allowed to read an object o only if the security label of s

dominates the security label of o - no read up and applies to all subjects

• A subject s is allowed to write an object o only if the security label of o is

equal to the security label of s

• Strong tranquility

78

The formal security policy specification should have the following rules:

• State transition operators

o Add to and delete from the current set of accesses

The formal security policy specification should have the following theorems and

proofs:

• The Basic Security Theorem that states that if the initial state (where state

is the current set of accesses) is secure, and every state that results from

some operation is secure, then every state is secure.

The formal top-level specification should have the following elements:

• ProcessID

• Memory Block

• Access Attributes {read, write}

• Security Levels (Top Secret, Secret, Classified, Unclassified)

The formal top-level specification should have the following components:

• Component that maps to the Current Access Set

• Component that maps to the Access Matrix

• Security Level function – Mapping Processes and Memory Blocks to

Security Labels

The formal top-level specification should have the following properties:

• A process p is allowed to read an a memory block m only if the security

label of p dominates the security label of m - no read up and applies to all

processes

• A process p is allowed to write a memory block m only if the security label

of p is equal to the security label of m

• Strong tranquility

79

The formal top-level specification should have the following rules:

• State transition operators

o Add or delete a memory block from a process

The formal top-level specification should have the following theorems and proofs:

• Theorems that prove the inter-level mapping between the FTLS and the

formal security policy model specification

Learning the specification language of ACL2 and understanding how to use the

theorem prover can take some time. However, the essential requirements of the

specifications as well as our PVS specifications themselves are given as a reference that

can reduce the amount of time and work. Choosing an appropriate verification system is

essentially based on the preferences of the user of the system. It is the user whose criteria

should be satisfied since he is the one interacting with the system. For example, a user

with knowledge of Lisp has an advantage when using ACL2 since that person does not

have to learn the specification language.

 If the inter-level mapping problem cannot be resolved using the PVS system,

then it should not be considered as an eligible system for the specified applications.

However if both ACL2 and PVS support inter-level mapping then the criteria in Table 6

should be weighed to determine how the selection process should be handled. Once inter-

level mapping is demonstrated, one can extrapolate from these results a conclusion about

the usefulness of a verification system for the verification of real world systems. The

work that has been done in this thesis demonstrates new research that has not been

addressed in any PVS documentation that we have read. Therefore, the problems we

have come upon as well as the ideas we have brought forth should be assessed and used

in future work.

80

Table 6. Comparison between ACL2 and PVS (Questions Marks to be answered by future
research)

 ACL2 PVS

Age
Current Version 2.7 in
2002 first developed

around 1994

Current Version 3.1 in
2003, first developed

around 1992

Purpose General purpose theorem
prover

General purpose theorem
prover

Implementation Language
Untyped Common Lisp –

__?__

Common Lisp – not very
difficult to understand the
theorem prover commands

or messages

Resource Requirements

ACL2 works on the Unix,
some variants including

Linux, and Macintosh OS.
It is built on top of any of

the following Common
Lisps: Allegro, GCL (Gnu

Common Lisp) [or, AKCL],
Lispworks, Lucid, and MCL
(Macintosh Common Lisp)

PVS 3.1 is currently
available only for Sparc
machines with Solaris 2
and Intel x86 Machines

with Linux compatible with
Redhat 5 or later.

User-Friendly

Automatic theorem prover,
user defined proof
strategies, provides

decision and inference
strategies and previously
proved theories, theorem

prover can argue about its
own code since ACL2 is

both an executable
programming language and

a specification language
__?__

Proofs are generated
interactively, user defined

proof strategies can also be
invoked, interface is easy to
understand, theorem prover

command are
straightforward and proof

construction is not difficult,
provides decision and

inference strategies and
previously proved theories,
specification language and
implementation language

are not difficult to
understand

User Interface Emacs - ___?___

Gnu Emacs, Xemacs –
Requires planning of proof
strategy however organized

in proof structure

81

Continuation of Table 6 –Comparison between ACL2 and PVS

 ACL2 PVS

User Presentation
Language Common Lisp __?__

Its own presentation
language – Able to express
the necessary properties,

succinct and easy to
understand

Consistency of
Specifications

Yes, Interactive consistency
- ___?___

Yes, automated consistency
checking of specifications –

Type checking system

Executable Specifications

Yes, specifications may be
executed in an underlying

implementation of Common
Lisp; thus can build

executable specifications

No

Multiple Levels of
Abstractions Yes - __?__

Yes – using the
IMPORTING clause to

map one specification to
another

Expressiveness

First Order Logic – results
in unambiguous

specifications and can
increase the automation of

the proof, the macros
facility can be used to make
specifications more succinct

and easier to grasp; No
Type System - __?__

Higher Order Logic -
wider range of

applications, more
expressive, elegant but

most of the time
expressions in HOL can

also be expressed in FOL;
Type System - increases
amount of flexibility and
increases the precision of
the specification System

82

THIS PAGE INTENTIONALLY LEFT BLANK

83

APPENDIX A: AGE

ACL2

Current Version 2.7 2002, first started around 1994

AutoFOCUS

First developed in 1996

Coq

Current version 7.3.1 2002, first started 2001

Elf/Twelf

Current Version 1.3, first started in 1998

HOL

Latest Version now called HOL 4, First version came out in 1988

IMPS

Current version 2.0, first started in 1990

Isabelle

Current Version 2002, first distributed in 1986

Nuprl

Current Version 2002, first developed in 1984

Otter

Current Version 3.1 in 2000, first started in 1995

PVS

Current Version 3.1 in 2003, first developed in 1992

SpecWare

Phase 2

84

STeP

Developed in 1994

TAME

Developed around 1997

TPS

Current Version 2000, first developed in 1990

Vienna

Developed around 1978 – not sure if updated since 1996

Z/Eves

Current Version 2.1 in 2002, first started in 1990

85

APPENDIX B: PURPOSE

ACL2

ACL2 is a general purpose theorem prover that can be used to verify every step of a proof
in almost any mathematical domain, from real analysis to circuit design. It is a stable and
robust system designed to tackle industrial-size verification projects

AutoFOCUS

AutoFocus is based on formal methods of systems engineering. It will serve as start point
and evaluation means for further tool concepts for the specification and development of
distributed systems.

Coq

Coq is used for extracting programs from proofs.

Elf/Twelf

Elf/Twelf is a system based on predicative type theory that can be used to specify and
reason about logics, languages, type systems, etc.

HOL

The HOL system has a wide variety of uses from formalizing pure mathematics to
verification of industrial hardware. Academic and industrial sites world-wide are using
HOL.

IMPS

IMPS is a interactive mathematical proof system intended to provide organizational and
computational support for the traditional techniques of mathematical reasoning.

Isabelle

Isabelle allows for single-step proof construction and provides control structures for
expressing search procedures. Isabelle also provides several generic tools, such as
simplifiers and classical theorem provers, which can be applied to object logics.

Nuprl

Nuprl is a computer system which provides assistance with problem solving. It supports
the interactive creation of proofs, formulas, and terms in a formal theory of mathematics.

86

With it one can express concepts associated with definitions, theorems, theories, books
and libraries.

Otter

Otter is currently an automated deduction system. Otter is designed to prove theorems
stated in first-order logic with equality.

PVS

PVS is a general purpose theorem proving tool.

SpecWare

Specware is a next-generation environment supporting the design, development and
automated synthesis of scalable, correct-by-construction software.

STeP

STeP is a tool for the computer aided formal verification of reactive systems, including
real-time and hybrid systems based on their temporal specification.

TAME

A major goal of TAME is to allow a software developer to use PVS to specify and prove
properties of an I/O automaton efficiently and without first becoming a PVS expert.

TPS

TPS is an automated theorem-prover for first-order logic and type theory.

Vienna

Vienna is a collection of techniques for the formal specification and development of
computing systems. It supports the top-down development of software systems specified
in a notion suitable for formal verification.

Z/Eves

Z/Eves is a formal methods tool to incorporate a unique set of technologies. It is a proof
obligation generator, an automated deduction system, and interactive theorem prover.

87

APPENDIX C: IMPLEMENTATION LANGUAGE

ACL2

Untyped Common Lisp

AutoFOCUS

Java

Coq

ML

Elf/Twelf

Standard ML

HOL

Standard ML

IMPS

Common lisp

Isabelle

Standard ML

Nuprl

ML

Otter

C

PVS

Common Lisp

SpecWare

PHASE 2

88

STeP

ML

TAME

Interface to PVS

TPS

Common Lisp

Vienna

VDM-SL, VDM++

Z/Eves

Common Lisp

89

APPENDIX D: RESOURCE REQUIREMENTS

ACL2

ACL2 works on Unix and some variants including Linux, and Macintosh OS

AutoFOCUS

Unix platforms

Coq

The current stable version of Coq is the 7.3.1. It currently is available for Unix (including
Mac OS X) and Windows 95/98/NT systems. It also runs on several operating systems
including Linux, Solaris, and Windows.

Elf/Twelf

Elf is implemented in Standard ML of New Jersey, which runs on a variety of
architectures; it requires version 0.72 or greater.

HOL

Unix and Windows machines

IMPS
IMPS runs on Linux and Solaris platforms. IMPS 2.0 should work with most versions of
Common Lisp.

Isabelle

Unix platforms; A minimal Isabelle installation requires only bash and perl (usually
provided by the operating system), and a suitable implementation of Standard ML; A
comfortable Isabelle working environment demands further user interface support.

Nuprl

Nuprl should run in any Common Lisp with CLX. There are also interfaces for
Symbolics Lisp machines and Suns running the SunView window systems.

Otter

It has been used mostly on UNIX systems, but limited versions also run on PCs and
Macintoshes.

90

PVS

PVS 3.0 is currently available only for Sparc machines with Solaris 2 and Intel x86 and
for machines with Linux compatible with Redhat 5 or later.

SpecWare

Phase 2

STeP

STeP runs on SUN sparc 20, and UltraSparc under SOLARIS, DEC Alpha under IRIX,
SGI under IRIX5, and x86 under LINUX

TAME

Same as PVS

TPS

Unix and Linux systems, and to some extent under Windows

Vienna

Unix platforms

Z/Eves

Z/Eves runs on Linux, Windows 95/98/NT and Solaris

91

APPENDIX E: USER-FRIENDLY

ACL2

It is not easy to get ACL2 to prove hard theorems. A user must understand the model,
ACL2 as a mathematical logic, and be able to construct a proof (in interaction with
ACL2). ACL2 will help construct the proof, but its primary role is to prevent logical
mistakes. A user’s responsibility is the creative burden or the mathematical insight why
the model has the desired property.[Moo03]

AutoFOCUS

AutoFOCUS offers user support by using a specification pattern, a model-based editor,
and consistency checks.

Coq

Coq allows for interactive construction of proofs.

Elf/Twelf

Elf/Twelf allows the user to program algorithms and express their correctness proof
within the same language. It is not well suited for interactive development of theories.

HOL

Beginning users can rapidly start doing proofs using HOL. It is similar to PVS since it
combines model checking with user guided interactive proof. HOL users have to learn
some ML before using the system.

IMPS

IMPS provides user guided interactive proofs. The course of machine deduction is
orchestrated and controlled by the user. Users can formulate mathematical concepts and
arguments in a natural and direct manner. Theory interpretations between the theory
multiples are created when needed by the user. The user has great freedom to decide in
order in which he wants to work on different subgoals. It is an effective tool to a wide
range of mathematically educated users.[Far95]

Isabelle

Isabelle allows for single step proof construction. Beginners can get by with a small
repertoire of commands and a basic knowledge of how Isabelle works.

92

Nuprl

Nuprl supports interactive creation of proofs, formulas, and terms in a formal theory of
mathematics. It has an interactive style of proof checking that characterizes Nuprl. In this
system it is impossible to develop an incorrect proof. It has characteristics of an
intelligent computer system in that it provides its users w/a facility for writing proof
generating programs in ML.[Koh99]

Otter

Otter is an automated deduction system that is designed to prove theorems stated in first
order logic with equality.

PVS

In PVS proofs are generated interactively and user defined proof strategies can also be
invoked.

SpecWare

PHASE 2

STeP

In STeP, proofs can entirely be automatic or can be user directed.

TAME

TAME provides a template that the user completes to specify an I/O automaton and a set
of proof steps natural for humans to use for proving properties of automata. Each proof
step is implemented by a PVS strategy and possibly some auxiliary theories that support
that strategy. Users can create proofs using “natural” or automatic proof steps, without
learning the details of the PVS proof steps. TAME also provides better user feedback that
that provided by PVS.[Arc01]

TPS

TPS can be proved automatically, interactively, or in a mixture of these modes. The
automatic mode is quite primitive since it deals with equality.

Vienna

In Vienna, a small change between concrete specifications and code leads to a
straightforward implementation, automatic code generation, and a descriptive language.
However, VDM is still relatively difficult to use.

93

Z/Eves

NEVER is the automated deduction component of EVES. It is an interactive theorem
prover that is capable of automatically performing large proof steps, yet can be finely
directed by the user. NEVER is neither a fully automatic nor an entirely manual theorem
prover. Although NEVER provides powerful deductive techniques for the automatic
proof of theorems, it also includes simple user steps that permits its use as a system more
akin to a proof checker than a theorem prover. The possible fine control of the prover
allows users to closely investigate proof strategies and determine why, for example,
proofs are failing.[Koh99]

94

THIS PAGE INTENTIONALLY LEFT BLANK

95

APPENDIX F: USER INTERFACE

ACL2

Emacs

AutoFOCUS

Project browser for the organization of the specification documents of the single project,
and one editor for each specification document

Coq

Standard teletype-like shell window; does not use any special interface such as Emacs or
Centaur

Elf/Twelf

Standard ML interface or Emacs mode

HOL

Xhol, chol, emacs

IMPS

Emacs-based interface

Isabelle

ML/user interface

Nuprl

Xwindows

Otter

Xwindows

PVS

Gnu Emacs, Xemacs

SpecWare

96

Phase 2

STeP

Xwindows

TAME

Friendly user interface - interface to PVS

TPS

Phase 2

Vienna

Phase 2

Z/Eves

Graphical interface-allows two specifications to be entered and edited

97

APPENDIX G: USER PRESENTATION LANGUAGE

ACL2

Common Lisp

AutoFOCUS

Phase 2

Coq

Phase 2

Elf/Twelf

Phase 2

HOL

Phase 2

IMPS

Phase 2

Isabelle

Phase 2

Nuprl

Common Lisp

Otter

Phase 2

PVS

It has its own presentation language

SpecWare

98

Phase 2

STeP

Phase 2

TAME

Phase 2

TPS

Phase 2

Vienna

Phase 2

Z/Eves

Phase 2

99

APPENDIX H: CONSISTENCY OF SPECIFICATIONS

ACL2

Yes, interactive consistency

AutoFOCUS

Phase 2

Coq

May cause ambiguity

Elf/Twelf

Consistency is unclear

HOL

Yes

IMPS

Phase 2

Isabelle

Yes

Nuprl

Yes, has consistency proof of formal specifications

Otter

Phase 2

PVS

Yes, automated consistency checking of specifications

SpecWare

Phase 2

100

STeP

Phase 2

TAME

Yes, automated consistency of specifications

TPS

Phase 2

Vienna

Phase 2

Z/Eves

Yes, has a consistency checker

101

APPENDIX I: EXECUTABLE SPECIFICATIONS

ACL2

Yes, specifications may be executed in an underlying implementation of Common Lisp;
thus can build executable specifications

AutoFOCUS

Phase 2

Coq

Yes, there are papers about efficient reasoning about executable specifications

Elf/Twelf

Many specifications are not executable under the traditional logic programming
semantics and performance may be hampered by redundant computation.

HOL

Yes, hol, hol.bare, hol.unquote, and hol.bare.unquote

IMPS

Phase 2

Isabelle

Phase 2

Nuprl

Yes, functional language for executable specifications

Otter

Phase 2

PVS

No

SpecWare

102

Phase 2

STeP

Phase 2

TAME

Phase 2

TPS

Phase 2

Vienna

You can write executable and non-executable specifications in VDM-SL

Z/Eves

Phase 2

103

APPENDIX J: MULTIPLE LEVELS OF ABSTRACTION

ACL2

Yes

AutoFOCUS

Phase 2

Coq

Phase 2

Elf/Twelf

Phase 2

HOL

Yes

IMPS

Yes

Isabelle

Phase 2

Nuprl

Phase 2

Otter

Phase 2

PVS

Yes

SpecWare

Phase 2

104

STeP

Phase 2

TAME

Phase 2

TPS

Phase 2

Vienna

Phase 2

Z/Eves

Phase 2

105

APPENDIX K: EXPRESSIVENESS

ACL2

ACL2 blends arithmetic decision procedures with rewriting techniques and it supports
rational numbers, complex rationals, character objects, character strings, and symbol
packages. Formal models written in ACL2 are usually executable unless they are
undefined functions. ACL2 has a powerful type – like mechanism called “guards” which
can be used to assure that functions are “well-typed”. Since it is programmed in the same
logic it supports, it can ensure that the logic is a practical means of building large formal
systems. Its logic is first-order quantifier free, its semiautomatic, and it uses lemmas as
guidance. In addition, it has many design procedures (prepositional calculus, equality,
arithmetic) and heuristics. Also, it has a built-in interactive “proof checker”.[Koh99]

AutoFOCUS

AutoFOCUS has formal, logical foundations, mathematical models and methods for
distributed systems. It is based on traces and stream processing functions(combine
functions and states). It creates consistency checks and supports simple temporal
logic.[Tum03]

Coq

Coq is a higher-order proof system where proofs and terms are in a pure functional
language. The basic specification language is called Gallina, in which formal
axiomatisations may be developed. It is a non-conservative extension of the Calculus of
Constructions with inductive types and is well adapted to inductive reasoning and has a
powerful type system. It can also be described as a directed tactics theorem-prover with a
set of predefined tactics, including an auto tactic that tries to apply precious lemmas
declared as hints. Coq offers program extraction where the logic mixes a constructive
logic and a classical logic. The system automatically extracts the constructive contents of
proofs as an executable ML program.[Koh99]

Elf/Twelf

Elf/Twelf is a LF logical framework based on a predicative type theory. It lends itself to
the very direct specification of programming languages, type systems, logics, etc. One
then can program algorithms and express their correctness proof within the same
language. Features that make it unique are the internal notion of deduction and the
expressive language of types (which include dependent types). These together can be
exploited to implement the meta-theory of programming languages, compiler, logics, etc.
All data is developed and stored as programs. It employs a sophisticated term
reconstruction algorithm that allows much of the input information to be elided without
any syntactic restrictions.[Koh99] [Pfe03]

106

HOL

HOL’s most outstanding feature is its high degree of programmability through the meta-
language ML. The scope of type variables is the current term in HOL and type-checking
includes simple typechecking. In addition, it has more emphasis on logical foundations
and less on usability. HOL does not support typechecking with respect to predicate
membership. A primary use of HOL is the building of special purpose proof
infrastructure. Users can add external tools to HOL and embed languages just by
programming in ML. The HOL System is an environment for interactive theorem proving
in a higher order logic.[Koh99] [Iyo03]

IMPS

The logic of IMPS is based on a version of simple type theory with partial functions and
subtypes. Automated analysis, computing with theorems, higher order logic, theory
interpretation, mathematical specification and inference are performed relative to
axiomatic theories. IMPS provides relatively large primitive inference steps to facilitate
human control of the deductive process and human comprehension of the resulting
proofs. There is a library containing almost a thousand repeatable proofs that covers
significant portions of logic, algebra and analysis. [Far95]

Isabelle

Isabelle is a generic theorem prover instantiated to support reasoning in several object
logics: 1. First order logic, constructive, and classical versions, 2. Higher order logic
compared to HOL, 3. Zermelo Fraenkel set theory, 4. Extensional version of Martin Lofs
Type Theory, 5. The classical first order sequent calculus, 6. The modal logics T, S4,
S43, 6. The logic for computable functions; Isabelle borrows ideas of LCF where
formulas are ML values, theorems belong to abstract types, and tactics support backward
proofs. However, object level rules are represented by terms not functions. Isabelle
theorem proving can involve writing ML code. [Pau02]

Nuprl

The logic has a constructive semantics in that the meaning of propositions is given by
rules of use and in terms of computation. One of the salient features of it is that the logic
and the system take account of the computational meaning of assertions and proofs. For
instance, given a constructive existence proof, the system can use the computational
information in the proof to build a representation of the object which demonstrates the
truth of the assertion. It supports an interactive environment for text editing, proof
generation and function evaluation. It has an interactive style of proof checking that
characterizes it. In this system it is impossible to develop an incorrect proof. It has
characteristics of an intelligent computer system in that it provides its users with a facility
for writing proof--generating programs in a metalanguage, ML. The style of the logic is
based on the stepwise refinement paradigm for problem solving in that the system

107

encourages the user to work backwards from goals to subgoals until one reaches what is
known.[Koh99][Cor03]

Otter

Otter supports first-order logic with equality. Otter's inference rules are based on
resolution and paramodulation, and it includes facilities for term rewriting, term
orderings, Knuth-Bendix completion, weighting, and strategies for directing and
restricting searches for proofs. Otter can also be used as a symbolic calculator and has an
embedded equational programming system. The main application of Otter is research in
abstract algebra and formal logic. Otter and its predecessors have been used to answer
many open questions in the areas of finite semigroups, ternary Boolean algebra, logic
calculi, combinatory logic, group theory, lattice theory, and algebraic geometry.[Arg03]

PVS

PVS supports classical higher-order logic with functions, sets, records, tuples, predicate
subtypes, dependent typing, and theories with type and individual parameters. Axioms
may be introduced freely and definitions (which may be recursive and include
recursively-defined abstract data types and inductively defined predicates) provide
conservative extension. It is an expressive specification language that allows concise and
natural specifications across a wide range of problem domains. It also has a rich type
system and very strict typechecking allows much of the specification to be embedded in
the types with proof obligations generated automatically by the typechecker. There is a
synergistic interaction between theorem proving and typechecking. PVS is an effective
interactive theorem prover that combines powerful arithmetic decision procedures and
other "large" primitive inference steps. PVS has the ability to display "humanly readable"
proofs.[Koh99][Sri03]

SpecWare

SpecWare supports automation of component-based specification of programs using a
graphical interface, incremental refinement of specifications into correct code in various
target languages (e.g. C++, LISP, Ada, Cobol), design and synthesis of software
architectures/frameworks, and design and synthesis of algorithm schemas. In addition, it
supports design and synthesis of reactive systems, data-type refinement, program
optimization, recording and experimenting with different design decisions, domain-
knowledge capture, verification and manipulation.[Kes03]

STeP

STeP integrates methods for deductive and algorithmic verification, including model
checking, theorem proving, automatic invariant generation, abstraction and modular
reasoning.[Sta03]

108

TAME

TAME provides two types of strategies: strategies for “automatic” proof and strategies
designed to implement “natural” proof steps, i.e. proof steps that mimic the high-level
steps in typical natural language proofs. It is a general-purpose higher-order logic
theorem prover that uses standard logic.[Arc01]

TPS

TPS supports first and higher -order logic. It has facilities for searching for expansion
proofs, translating these into natural deduction proofs, constructing natural deduction
proofs, translating natural deduction proofs which do not contain cuts into expansion
proofs, and solving unification problems in higher-order logic. It has a formula editor
which facilitates constructing new formulas from others already known to TPS, and a
library facility for saving formulas, definitions, and modes (groups of flag settings). It can
operate in automatic, semi-automatic or interactive mode and it’s logical language is that
of typed lambda-calculus. It has two proving components: search for an expansion proof,
and meta language for defining tactics and constructing natural deduction proofs. It is
controlled by setting of over 150 user settable flags and it has a formula editor, library
facility for saving formulas, definitions, and modes. [And00]

Vienna

VDM-SL has a formally defined semantics. The logic underlying this semantics is based
on the Logic of Partial Functions (LPF). The definition of the semantics is given in a
denotational style in the VDM-SL Standard. It has rules for data and operation refinement
which allows one to establish links between abstract requirements specifications and
detailed design specifications down to the level of code. It has a proof theory in which
rigorous arguments can be conducted about the properties of specified systems and the
correctness of design decisions. In addition, it uses a specification notation that is similar
to Z. Its formal specifications is IS0-VDM – SL. [Ibm03]

Z/Eves

Z/Eves includes a graphical user interface that allows Z specifications to be entered,
edited, and analyzed in their typeset form. It supports the incremental analysis of
specifications and manages the synchronization of the analysis with modifications to the
specification. In addition, it supports untyped first -order logic, without the conventional
distinction between terms. EVES has a mechanism for defining new functions and every
declaration must be proved to define a conservative extension of the theory in which it
appears. There is also a library system that allows theories to be combined. It combines
the power of its automatic capabilities (embodied in the reduction commands) with the
ability of the user to have fine-grained control (using command modifiers and low level
inference commands). We view the unique attributes of EVES as being the combination
of (i) an expressive formal specification and programming language, (ii) practical

109

automated deduction support, (iii) mathematical soundness, (iv) rigorous tool
development, and (v) availability on workstations and PCs. [Koh99] [Ora03]

110

THIS PAGE INTENTIONALLY LEFT BLANK

111

APPENDIX L: DEVELOPERS/SUPPORT

ACL2

Editors Kaufmann and Moore,
Contact persons:moore@cs.utexas.edu,kaufmann@aus.edsr.eds.com

AutoFOCUS

Department of Computer Science, TU Munchen

Coq

INRIA Rocquencourt and ENS Lyon

Elf/Twelf

Mark Pfenning at Carnegie - Mellon University
Contact: Frank Pfenning, School of Computer Science, CMU – there is a mailing list with
announcement of new papers and implementation releases of Elf

IMPS

Mitre corporation

HOL

Cambridge university, computer laboratory

Isabelle

Cambridge University and TU Munich

Nuprl

 Department or Computer Science, Cornell University

Otter

Argonne national laboratory

PVS

SRI International

112

SpecWare

Kestrel institute

STeP

Stanford University

TAME

Naval Research Laboratory

TPS

Carnegie Mellon University

Vienna

IBM Vienna Laboratory

Z/Eves

ORA Canada

113

APPENDIX M: SEC_THEORY, SLABELS, STATE SPECIFICATIONS

Sec_theory[Access_State: TYPE, TransformInstance: TYPE, seq:
sequence[Access_State], SecState:[Access_State -> bool], Transform:
[TransformInstance, Access_State -> Access_State]]: THEORY
 BEGIN
 ASSUMING
 st: VAR Access_State

 x: VAR TransformInstance

 n: VAR nat

% Assumptions needed to form an inductive proof
 transition_state_secure: ASSUMPTION SecState(st) => SecState(Transform(x, st))

 seq_0_secure: ASSUMPTION SecState(nth(seq, 0))

% there exists a transform that will take the system from state n to n+1
 seq_transform: ASSUMPTION
 EXISTS x: nth(seq, n + 1) = Transform(x, nth(seq, n))

 ENDASSUMING

% Every state in the sequence is a secure state
 seq_is_secure: THEOREM every(SecState)(seq)

 END Sec_theory

SLabels: THEORY
 BEGIN

 Label: TYPE+ = {i:nat | i <=4 AND i > 0} CONTAINING 1

 U: Label = 1
 C: Label = 2
 S: Label = 3
 TS: Label = 4

 END SLabels

State[Subject: TYPE+, Object: TYPE+, (IMPORTING SLabels) slSubject:

114

 [Subject -> Label], slObject: [Object -> Label], Action: TYPE+,
 addit: Action, del: Action, no_op: setof[Action], Mode: TYPE+, rd: Mode, wr:
Mode]: THEORY
 BEGIN

% Assumptions needed to prove proof obligations
 ASSUMING
 AddDelNotNo_Op: ASSUMPTION
 NOT member(addit, no_op) AND NOT member(del, no_op)

 AddnotDel: ASSUMPTION NOT addit = del

 RdnotWr: ASSUMPTION NOT rd = wr

 ENDASSUMING

 Access: TYPE =
 [# u: Subject, f: Object, m: {x: Mode | x = rd OR x = wr} #]

 Access_State: TYPE = setof[Access]

 TransformInstance: TYPE = [# ac: Action, a: Access #]

 % Verifies that an access is secure for a specific mode by comparing security
 % labels of the subject and object
 SecureAccess(a: Access): bool =
 COND a`m = rd -> slSubject(a`u) >= slObject(a`f),
 a`m = wr -> slSubject(a`u) = slObject(a`f)
 ENDCOND

% If all accesses in an Access_State are secure, then the Access_State is
% secure
 SecState(st: Access_State): bool =
 FORALL (a: Access): member(a, st) => SecureAccess(a)

% If a tranform is to add an access to an Access_State and the access to be added is
% secure then add that access to the Access_State. If a transform is to delete an access
% from an Access_State and the access is already in the state, then remove the access
% from the Access_State
 Transform(e: TransformInstance, st: Access_State): Access_State =
 COND e`ac = addit AND SecureAccess(e`a) -> add(e`a, st),
 e`ac = del AND st(e`a) -> remove(e`a, st),
 member(e`ac, no_op) -> st,
 ELSE -> st
 ENDCOND
 fs: sequence[Access_State]

115

 fs_0_secure: AXIOM SecState(nth(fs, 0))

 n: VAR nat

 fs_transform: AXIOM
 EXISTS (e: TransformInstance): nth(fs, n + 1) = Transform(e, nth(fs, n))

 transition_state_secure: AXIOM
 (FORALL (st: Access_State, e: TransformInstance):
 SecState(st) => SecState(Transform(e, st)))

 IMPORTING Sec_theory[Access_State, TransformInstance, fs, SecState,
 Transform]

 END State
--

State TCCs

 % Disjointness TCC generated (at line 47, column 6) for
 % COND a`m = rd -> slSubject(a`u) >= slObject(a`f),
 % a`m = wr -> slSubject(a`u) = slObject(a`f)
 % ENDCOND
 % proved - complete
SecureAccess_TCC1: OBLIGATION FORALL (a: Access): NOT (a`m = rd AND
a`m = wr);

% Coverage TCC generated (at line 47, column 6) for
 % COND a`m = rd -> slSubject(a`u) >= slObject(a`f),
 % a`m = wr -> slSubject(a`u) = slObject(a`f)
 % ENDCOND
 % proved - complete
SecureAccess_TCC2: OBLIGATION FORALL (a: Access): a`m = rd OR a`m = wr;

% The disjointness TCC (at line 47, column 6) in decl SecureAccess for
 % COND a`m = rd -> slSubject(a`u) >= slObject(a`f),
 % a`m = wr -> slSubject(a`u) = slObject(a`f)
 % ENDCOND
 % was not generated because it simplifies to TRUE.

% The coverage TCC (at line 47, column 6) in decl SecureAccess for
 % COND a`m = rd -> slSubject(a`u) >= slObject(a`f),
 % a`m = wr -> slSubject(a`u) = slObject(a`f)
 % ENDCOND
 % was not generated because it simplifies to TRUE.

116

% Disjointness TCC generated (at line 57, column 6) for
 % COND e`ac = addit AND SecureAccess(e`a) -> add(e`a, st),
 % e`ac = del AND st(e`a) -> remove(e`a, st),
 % member(e`ac, no_op) -> st,
 % ELSE -> st
 % ENDCOND
 % proved - complete
Transform_TCC1: OBLIGATION
 FORALL (e: TransformInstance, st: Access_State):
 NOT ((e`ac = addit AND SecureAccess(e`a)) AND e`ac = del AND st(e`a)) AND
 NOT ((e`ac = addit AND SecureAccess(e`a)) AND member[Action](e`ac, no_op))
 AND NOT ((e`ac = del AND st(e`a)) AND member[Action](e`ac, no_op));

% The disjointness TCC (at line 57, column 6) in decl Transform for
 % COND e`ac = addit AND SecureAccess(e`a) -> add(e`a, st),
 % e`ac = del AND st(e`a) -> remove(e`a, st),
 % member(e`ac, no_op) -> st,
 % ELSE -> st
 % ENDCOND
 % was not generated because it simplifies to TRUE.

% Assuming TCC generated (at line 76, column 12) for
 % Sec_theory[Access_State, TransformInstance, fs, SecState, Transform]
 % generated from assumption Sec_theory.transition_state_secure
 % proved - complete
IMP_Sec_theory_TCC1: OBLIGATION
 FORALL (st: Access_State, x: TransformInstance):
 SecState(st) => SecState(Transform(x, st));

% Assuming TCC generated (at line 76, column 12) for
 % Sec_theory[Access_State, TransformInstance, fs, SecState, Transform]
 % generated from assumption Sec_theory.seq_0_secure
 % proved - complete
IMP_Sec_theory_TCC2: OBLIGATION SecState(nth[Access_State](fs, 0));

% Assuming TCC generated (at line 76, column 12) for
 % Sec_theory[Access_State, TransformInstance, fs, SecState, Transform]
 % generated from assumption Sec_theory.seq_transform
 % proved - complete
IMP_Sec_theory_TCC3: OBLIGATION
 FORALL (n: nat):
 EXISTS (x: TransformInstance):
 nth[Access_State](fs, n + 1) = Transform(x, nth[Access_State](fs, n));
--

117

Proofs for Sec_theory and State Specifications

Proof scripts for importchain of theory State:

Sec_theory.seq_is_secure: proved - complete [shostak](0.50 s)

(""
 (expand "every")
 (induct "n")
 (("1" (use "seq_0_secure"))
 ("2"
 (skolem!)
 (use "seq_transform")
 (skolem!)
 (use "transition_state_secure")
 (replace -2 (-1) rl)
 (propax))))

State.SecureAccess_TCC1: proved - complete [shostak](3.68 s)

("" (skolem!) (use "RdnotWr") (flatten) (simplify) (grind))

State.SecureAccess_TCC2: proved - complete [shostak](1.24 s)

("" (skolem!) (typepred "a!1`m") (propax))

State.Transform_TCC1: proved - complete [shostak](0.60 s)

("" (skolem!) (use "AddDelNotNo_Op") (use "AddnotDel") (grind))

State.IMP_Sec_theory_TCC1: proved - complete [shostak](2.46 s)

("" (skolem!) (use "transition_state_secure"))

State.IMP_Sec_theory_TCC2: proved - complete [shostak](0.64 s)

("" (use "fs_0_secure"))

118

State.IMP_Sec_theory_TCC3: proved - complete [shostak](2.90 s)

("" (skolem!) (use "fs_transform"))

119

APPENDIX N: FTLSSPEC SPECIFICATION

FTLSSpec[Action: TYPE+, addit: Action, del: Action, no_ops: setof[Action],
 Mode: TYPE+, rd: Mode, wr: Mode]: THEORY
 BEGIN

 IMPORTING SLabels

 % Axioms are used instead of assumptions since these principles should be satisfied
 % in the implementation
 AddDelNotNo_Ops: AXIOM
 NOT member(addit, no_ops) AND NOT member(del, no_ops)

 AdditNotDel: AXIOM NOT addit = del

% Read and write are the modes
 ReadNotWr: AXIOM NOT rd = wr

 MAXMEM: nat

 Memory: TYPE+ = {mem: nat | mem <= MAXMEM} CONTAINING MAXMEM

 MemoryExists: AXIOM FORALL (m: Memory): m > 0

% A memory block is represented by lower and upper bound values of memory
 MemBlock: TYPE+ = [# lb: Memory, ub: {x: Memory | x >= lb} #] CONTAINING (#
lb := MAXMEM, ub := MAXMEM #)

 SetofMB: TYPE+ = setof[MemBlock] CONTAINING {x: MemBlock | x =
 (# lb := MAXMEM, ub := MAXMEM #)}

 slMemBlock: [MemBlock -> Label]

% Verifies that memory block do not overlap
 ValidMemBlocks(smb: SetofMB): bool =
 FORALL (e, b: MemBlock):
 NOT e = b AND member(e, smb) AND member(b, smb) =>
 (e`lb > b`ub) OR (b`lb > e`ub)

 % System memory blocks are memory blocks that are valid
 SystemMemBlocks: TYPE+ = {sysmb: SetofMB | ValidMemBlocks(sysmb)}
 CONTAINING {x: MemBlock | x = (# lb := MAXMEM, ub := MAXMEM #)}
% System memory is a fixed set of valid memory blocks
 SysMem: SystemMemBlocks

120

 ProcessID: TYPE+ FROM nat

% Each memory block instance has an associated mode
 MemBlockInstance: TYPE =
 [# mb: {x: MemBlock | member(x, SysMem)}, m: Mode #]

 ProcessMB: TYPE = setof[MemBlockInstance]

% Each process is associated with a ProcessID number and a set of memory blocks
% with their associated modes
 Processes: TYPE = [ProcessID -> ProcessMB]

 slPr: [ProcessID -> Label]

 Request: TYPE = [# ac: Action, p: ProcessID, mbi: MemBlockInstance #]

% Provides some inter-level mapping between the State specification and the FTLSSpec
% specification
 IMPORTING State[ProcessID, MemBlock, slPr, slMemBlock, Action, addit,

 del, no_ops, Mode, rd, wr]

% Maps a component of FTLSSpec to TransformInstance, a component of State
% A TransformInstance’s action corresponds to a request’s action, a subject corresponds
% to a request’s processed, an object corresponds with a request’s memory block and a
% mode corresponds with a request’s mode
 Proc_Trans_Inst(r: Request): TransformInstance =
 (# ac := r`ac, a := (# u := r`p, f := r`mbi`mb, m := r`mbi`m #) #)

 p: VAR Processes

% Maps a component of FTLSSpec to Access_State, a component of the State
% specification
% Process_State maps processes that map to an Access_State where for every access in
% the Access_State there exists a memory block and ProcessID in which the access’
% subject corresponds with a ProcessID and the access’ object corresponds with a
% memory block and the access’ mode corresponds with the memory block’s mode and
% the memory block is a member of that process associated with the ProcessID
 Process_State(p): Access_State =
 {a: Access | EXISTS (mbi: MemBlockInstance, PID: ProcessID):
 a`u = PID AND a`f = mbi`mb AND a`m = mbi`m AND member(mbi, p(PID))}

% Verifies that a request is secure by checking the access privileges a memory block
% and a process
 SecureRequest?(r: Request): bool =
 COND r`ac = addit ->
 ((r`mbi`m = rd AND slPr(r`p) >= slMemBlock(r`mbi`mb)) OR

121

 (r`mbi`m = wr AND slPr(r`p) = slMemBlock(r`mbi`mb))),
 ELSE -> TRUE
 ENDCOND

% A memory block can be added to a process if it is part of a secure request.
% A memory can be deleted from a process by just removing it from the process
 ProcTransform(r: Request, Pr: Processes): Processes =
 COND ac(r) = addit AND SecureRequest?(r) ->
 LAMBDA (x: ProcessID):
 IF NOT x = r`p THEN Pr(x) ELSE add(r`mbi, Pr(x)) ENDIF,
 r`ac = del ->
 LAMBDA (x: ProcessID):
 IF NOT x = r`p THEN Pr(x) ELSE remove(r`mbi, Pr(x)) ENDIF,
 ELSE -> Pr
 ENDCOND

% Verifies that all memory blocks of a process satisfy the security properties then it is a
% secure process
 SecProcess(p: Processes, pid: ProcessID): bool =
 FORALL (mbi: MemBlockInstance | member(mbi, p(pid))):
 COND mbi`m = rd -> slPr(pid) >= slMemBlock(mbi`mb),
 mbi`m = wr -> slPr(pid) = slMemBlock(mbi`mb)
 ENDCOND

% Verifies that if all processes are secure in the current state, then the state is secure
 SecProcesses(pr: Processes): bool =
 FORALL (pid: ProcessID): SecProcess(pr, pid)

SecProcesses(pr) => SecProcesses(ProcTransform(r, pr)))

END FTLSSpec
--

FTLSSpec Specification TCCs

% Subtype TCC generated (at line 16, column 56) for MAXMEM
 % expected type Memory
 % proved - complete
Memory_TCC1: OBLIGATION MAXMEM <= MAXMEM;

% Subtype TCC generated (at line 40, column 13) for
 % {x: MemBlock | x = (# lb := MAXMEM, ub := MAXMEM #)}
 % expected type SystemMemBlocks
 % proved - complete
SystemMemBlocks_TCC1: OBLIGATION

122

 ValidMemBlocks({x: MemBlock | x = (# lb := MAXMEM, ub := MAXMEM #)});

% Assuming TCC generated (at line 57, column 12) for
 % State[ProcessID, MemBlock, slPr, slMemBlock, Action, addit, del,
 % no_ops, Mode, rd, wr]
 % generated from assumption State.AddDelNotNo_Op
 % proved - complete
IMP_State_TCC1: OBLIGATION
 NOT member[Action](addit, no_ops) AND NOT member[Action](del, no_ops);

% Assuming TCC generated (at line 57, column 12) for
 % State[ProcessID, MemBlock, slPr, slMemBlock, Action, addit, del,
 % no_ops, Mode, rd, wr]
 % generated from assumption State.AddnotDel
 % proved - complete
IMP_State_TCC2: OBLIGATION NOT addit = del;

% Assuming TCC generated (at line 57, column 12) for
 % State[ProcessID, MemBlock, slPr, slMemBlock, Action, addit, del,
 % no_ops, Mode, rd, wr]
 % generated from assumption State.RdnotWr
 % proved - complete
IMP_State_TCC3: OBLIGATION NOT rd = wr;

% Disjointness TCC generated (at line 79, column 6) for
 % COND r`ac = addit AND SecureRequest?(r) ->
 % LAMBDA (x: ProcessID):
 % IF NOT x = r`p THEN Pr(x) ELSE add(r`mbi, Pr(x)) ENDIF,
 % r`ac = del ->
 % LAMBDA (x: ProcessID):
 % IF NOT x = r`p THEN Pr(x) ELSE remove(r`mbi, Pr(x)) ENDIF,
 % ELSE -> Pr
 % ENDCOND
 % proved - incomplete
ProcTransform_TCC1: OBLIGATION
 FORALL (r: Request):
 NOT ((r`ac = addit AND SecureRequest?(r)) AND r`ac = del);

% The disjointness TCC (at line 79, column 6) in decl ProcTransform for
 % COND r`ac = addit AND SecureRequest?(r) ->
 % LAMBDA (x: ProcessID):
 % IF NOT x = r`p THEN Pr(x) ELSE add(r`mbi, Pr(x)) ENDIF,
 % r`ac = del ->
 % LAMBDA (x: ProcessID):
 % IF NOT x = r`p THEN Pr(x) ELSE remove(r`mbi, Pr(x)) ENDIF,
 % ELSE -> Pr

123

 % ENDCOND
 % was not generated because it simplifies to TRUE.

% Disjointness TCC generated (at line 92, column 8) for
 % COND mbi`m = rd -> slPr(pid) >= slMemBlock(mbi`mb),
 % mbi`m = wr -> slPr(pid) = slMemBlock(mbi`mb)
 % ENDCOND
 % proved - incomplete
SecProcess_TCC1: OBLIGATION
 FORALL (p: Processes, pid: ProcessID,
 mbi: MemBlockInstance | member[MemBlockInstance](mbi, p(pid))):
 NOT (mbi`m = rd AND mbi`m = wr);

% The disjointness TCC (at line 92, column 8) in decl SecProcess for
 % COND mbi`m = rd -> slPr(pid) >= slMemBlock(mbi`mb),
 % mbi`m = wr -> slPr(pid) = slMemBlock(mbi`mb)
 % ENDCOND
 % was not generated because it simplifies to TRUE.

% The coverage TCC (at line 92, column 8) in decl SecProcess for
 % COND mbi`m = rd -> slPr(pid) >= slMemBlock(mbi`mb),
 % mbi`m = wr -> slPr(pid) = slMemBlock(mbi`mb)
 % ENDCOND
 % was not generated because it simplifies to TRUE.

--

Proof Commands for FTLSSpec Specification

Proof scripts for importchain of theory FTLSSpec:

Sec_theory.seq_is_secure: unchecked [shostak](5.29 s)

(""
 (expand "every")
 (induct "n")
 (("1" (use "seq_0_secure"))
 ("2"
 (skolem!)
 (use "seq_transform")
 (skolem!)
 (use "transition_state_secure")
 (replace -2 (-1) rl)

124

 (propax))))

State.SecureAccess_TCC1: proved - complete [shostak](3.68 s)

("" (skolem!) (use "RdnotWr") (flatten) (simplify) (grind))

State.SecureAccess_TCC2: proved - complete [shostak](1.24 s)

("" (skolem!) (typepred "a!1`m") (propax))

State.Transform_TCC1: proved - complete [shostak](0.60 s)

("" (skolem!) (use "AddDelNotNo_Op") (use "AddnotDel") (grind))

FTLSSpec.Memory_TCC1: proved - complete [shostak](0.03 s)

("" (tcc))

FTLSSpec.SystemMemBlocks_TCC1: proved - complete [shostak](0.14 s)

("" (tcc))

FTLSSpec.IMP_State_TCC1: proved - complete [shostak](0.03 s)

("" (use "AddDelNotNo_Ops"))

FTLSSpec.IMP_State_TCC2: proved - complete [shostak](0.07 s)

("" (tcc) (use "AdditNotDel"))

FTLSSpec.IMP_State_TCC3: proved - complete [shostak](0.72 s)

("" (use "ReadNotWr"))

FTLSSpec.ProcTransform_TCC1: proved - complete [shostak](0.15 s)

("" (skolem!) (flatten) (use "AdditNotDel") (grind))

125

FTLSSpec.SecProcess_TCC1: proved - complete [shostak](0.09 s)

("" (skolem!) (use "ReadNotWr") (grind))

126

THIS PAGE INTENTIONALLY LEFT BLANK

127

APPENDIX O: PROOF OF THEOREM SEQ_IS_SECURE OF
SEC_THEORY SPECIFICATION

seq_is_secure :

 |-------
{1} every(SecState)(seq)

Rerunning step: (expand "every")
Expanding the definition of every,
this simplifies to:
seq_is_secure :

 |-------
{1} FORALL n: SecState(nth(seq, n))

Rerunning step: (induct "n")
Inducting on n on formula 1,
this yields 2 subgoals:
seq_is_secure.1 :

 |-------
{1} SecState(nth(seq, 0))

Rerunning step: (use "seq_0_secure")
Using lemma seq_0_secure,

This completes the proof of seq_is_secure.1.

seq_is_secure.2 :

 |-------
{1} FORALL j: SecState(nth(seq, j)) IMPLIES SecState(nth(seq, j + 1))

Rerunning step: (skolem!)
Skolemizing,
this simplifies to:
seq_is_secure.2 :

 |-------
{1} SecState(nth(seq, j!1)) IMPLIES SecState(nth(seq, j!1 + 1))

Rerunning step: (use "seq_transform")
Using lemma seq_transform,
this simplifies to:

128

seq_is_secure.2 :

{-1} EXISTS x: nth(seq, j!1 + 1) = Transform(x, nth(seq, j!1))
 |-------
[1] SecState(nth(seq, j!1)) IMPLIES SecState(nth(seq, j!1 + 1))

Rerunning step: (skolem!)
Skolemizing,
this simplifies to:
seq_is_secure.2 :

{-1} nth(seq, j!1 + 1) = Transform(x!1, nth(seq, j!1))
 |-------
[1] SecState(nth(seq, j!1)) IMPLIES SecState(nth(seq, j!1 + 1))

Rerunning step: (use "transition_state_secure")
Using lemma transition_state_secure,
this simplifies to:
seq_is_secure.2 :

{-1} SecState(nth(seq, j!1)) => SecState(Transform(x!1, nth(seq, j!1)))
[-2] nth(seq, j!1 + 1) = Transform(x!1, nth(seq, j!1))
 |-------
[1] SecState(nth(seq, j!1)) IMPLIES SecState(nth(seq, j!1 + 1))

Rerunning step: (replace -2 (-1) rl)
Replacing using formula -2,
this simplifies to:
seq_is_secure.2 :

{-1} SecState(nth(seq, j!1)) => SecState(nth(seq, j!1 + 1))
[-2] nth(seq, j!1 + 1) = Transform(x!1, nth(seq, j!1))
 |-------
[1] SecState(nth(seq, j!1)) IMPLIES SecState(nth(seq, j!1 + 1))

which is trivially true.

This completes the proof of seq_is_secure.2.

Q.E.D.

Run time = 0.88 secs.
Real time = 1.39 secs.

129

GLOSSARY

 DEFINITION

Abstract data types

An abstract data type (ADT) is characterized by the
following properties: (1) It exports a type. (2) It exports a set
of operations. This set is called interface. (3) Operations of
the interface are the one and only access mechanism to the
type's data structure. (4) Axioms and preconditions define

the application domain of the type.
BDDs(Binary Decision

Diagrams)
BDDs are a canonical and efficient way to represent and

manipulate Boolean functions

Dependent type
A dependent type is a type consisting of several components

where the type of (or the domain of) a later component
depends on other earlier components

Equational logic
First-order equational logic consists of quantifier-free terms

of ordinary first-order logic, with equality as the only
predicate symbol

Executable formal
specification

Executable formal specification can allow engineers to test
(or simulate) the specified system on concrete data before

the system is implemented

First order predicate logic Predicate logic in which predicates take only individuals as
arguments and quantifiers only bind individual variables.

Higher order predicate
logic

Predicate logic in which predicates take other predicates as
arguments and quantifiers bind predicate variables

Inductive theorem prover Theorem prover with induction that is based on the explicit
induction paradigm

Inductively defined
predicates

Inductively defined predicates have several properties that
can be used when formally proving theorems on the

predicates: (1) The theorem that the predicate P satisfies the
given rules (2) The induction theorem obtained from the fact
that P is the least relation (3) The case analysis theorem on

P

Logical Framework

The idea of a logical framework is to provide a single,
universal formalism for representing formalisms so that an

implementation of a formal system may be obtained by
simply representing it in the framework

Model Checker
A technique used to detect errors or prove the absence in

safety critical software and hardware systems; Based on the
optimization of datastructure and algorithms

Predicate subtypes A predicate subtype is a subtype defined by requiring the
elements of the subtype to satisfy a predicate

130

 DEFINITION

Proof checker
A proof checker consists of "a system of language for

mathematics" and "a program to check the proof written in
such a language".

Propositional logic

Propositional Logic is concerned with propositions and their
interrelationships. Roughly speaking, a proposition is a
possible "condition" of the world about which we want to

say something

Quantifier free A formula is quantifier free if and only if it contains no
quantifiers

Recursively defined
abstract data types

Abstract data structures that are "tree-like" recursive data
structures (i.e. lists and binary trees)

Semantic subtype
A semantic subtype is a subtype such that the set of the

objects represented by the terms of the subtype is a subset of
the objects represented by the terms of the parent type

Subtyping

If for every object o1: S there is o2:T such that for all
programs P defined in terms of T, the behavior of P is

unchanged when o1 is substituted for o2, then S is a subtype
of T.

Syntactic subtype
A syntactic subtype is a subtype such that the set of the

syntactic elements (terms) of the subtype is a subset of the
syntactic elements of the parent type

Theorem prover

A tool necessary to check and to manage proofs. It can come
with decision procedures and other automated deduction
which can make the proof much quicker and easier. The

theorem prover is closely related to a proof checker since
both are about "mechanical reasoning. The difference is

whether the focus is on the computer checking the reasoning
of the human, or on the human watching and guiding the
computer's proof efforts. The more a system tries to be

"smart", the more chance it has of being in the "theorem
prover" category.

131

REFERENCES

[And00] Andrews, Peter. System Description: TPS: A Theorem Proving System
for Type Theory. <gtps.math.cmu.edu/tps-descr.ps>. 2000.

[And03] Andrews, Peter. TPS Homepage. <gtps.math.cmu.edu/tps-about.html>

[Arc01] Archer, Myla. TAME: Using PVS Strategies for Special-Purpose

Theorem Proving.
<chacs.nrl.navy.mil/publications/CHACS/2001/index2001.html>.
2001.

[Arg03] Argonne National Laboratory. Otter: An Automated Deduction

System: Homepage. <www-unix.mcs.anl.gov/AR/otter/#accomp>

 [Asc02] Ascent Technologies. <http://www.asc-tech.com/vv.htm>. January

2002.

[Bel73] Bell, D.E., and LaPadula, L.J., Secure computer systems:
mathematical foundations and model. M74-244, The MITRE Corp.,
Bedford, Mass., May 1973.

[Bib77] Biba, K. Integrity Considerations for Secure Computer Systems. U.S.

Air Force Electronic Systems Division Technical Report 760372,
1977.

 [Car97] Cardelli, L., Type Systems, Handbook of Computer Science and

Engineering, Chapter 103, CRC Press, 1997
<http://research.microsoft.com/Users/luca/Papers/TypeSystems.pdf>

[Cha02] Charpenter, Michel. Tool Support for Formal Verification of Reactive

Systems. <www.cs.unh.edu/~charpov/ProofAssistant>. July 2002.

[Com03] Common Criteria Documentation.

<http://www.commoncriteria.org/cc/cc.html>. 2003

[Cor03] Cornell University. PRL Project “Proof/Program Refinement Logic”:
NuPrl Homepage.
<www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html>

[Dut97] Dutertre, B. and Stavridou, V., Formal Requirements Analysis of an

Avionics Control System. IEEE transaction on Software
Engineering.Vol. 23, NO.5, pg. 267 – 277, May 1997

132

[Far93] Farmer, W. IMPS: An Interactive Mathematical Proof System.
<imps.mcmaster.ca/doc/imps-overview.pdf>. February 1993.

[Far95] Farmer, W. IMPS. <www-formal.Stanford.edu/clt/ARS/Entries/imps>.

August 1995.

[Far03] Farmer, W. IMPS Homepage. <imps.mcmaster.ca>

[Fre02] Frey, P., Radhakrishnan, R. and Carter, H., A Formal Specification
and Verification Framework for Time Warp-Based Parallel
Simulation. IEEE Transaction on Software Engineering. Vol. 28, No.
1, January 2002

[Hei96] Heimdahl, M.P.E. and Czerny, B.J., Using PVS to analyze

hierarchical state-based requirements for completeness and
consistency. High-Assurance Systems Engineering Workshop, IEEE.
pgs. 252 – 262, October 1996

[Ibm03] IBM Vienna Laboratory. Vienna Development Method Homepage.
<www.ifad.dk/vdm/vdm.html>

[Inr03] Inria, Coq Homepage. <coq.inria.fr>

[Irv03] Irvine, C., Security Policy Modeling. Center for INFOSEC Studies and

Research. 2003

[Iyo03] Iyoda, J., HOL Homepage. <www.cl.cam.ac.uk/Research/HVG/HOL>

[Kau02] Kaufamm, M., Manolios, P., and Moore, J.S., ACL2 – ComputerAided

Reasoning: An Approach. August 2002

[Kav02] Kavanagh, K., The Role of Mathematical Logic in Designing Secure

Systems. 2002

[Kes03] Kestrel Institute. SpecWare Homepage.

<www.kestrel.edu/HTML/prototypes/specware.html>

[Koh99] Kohlhase, M., Database of Existing Mechanized Reasoning Systems.

<http://www-formal.stanford.edu/clt/ARS/systems.html>. June 1999

[Kro02] Kroening Daniel. Application Specific Higher Order Logic Theorem
Proving.

 < www.kroening.com/papers/verify2002.pdf>. 2002.

[Law02] Lawford, M. and Hu, X., Right on Time: Pre-verified Software

Components for Construction of Real-Time Systems. Nov. 2002.

133

[Lam74] Lampson, B., Protection. ACM Operating Systems Review, 8(1):18-24,

January 1974.

[Man99] Manna, Zohar. An Update on Step: Deductive-Algorithmic Verification

of Reactive Systems.
<www.stanford.edu/~finkbein/publications/tools98/tools99.pdf>.1999.

[Mer96] Merriam, N.A. and Harrison, M.D., Evaluating the Interfaces of Three

Theorem Proving Assistants. 1996

[Moo03] Moore and Kaufmann. ACL2 Version 2.7 Hompage.

<www.cs.utexas.edu/users/moore/acl2/acl2-doc.html>

[Nog02] Nogin, Aleksey. A Review of Theorem Provers.

<www.cs.cornell.edu/Nuprl/PRLSeminar/PRLSeminar01_02/Nogin/P
RLseminar7b.pdf>. February 2002.

[Ora03] ORA Canada. Z/Eves Homepage.<www.ora.on.ca/z-

eves/welcome.html>

[Owr99] Owre, S. and Shankar, N., The Formal Semantics of PVS.
<http://www.csl.sri.com/papers/csl-97-2/>. March 1999

[Owr01] Owre, S. and others. PVS Language Reference. SRI International.

December 2001

[Owr01*] Owre, S. and others. PVS System Guide. SRI International. December

2001

[Pai01] Paige, R.F. and Ostroff, J.S., Metamodelling and Conformance
Checking with PVS. 2001

[Pau02] Paulson, Lawrence. Introduction to Isabelle.

<www.cl.cam.ac.uk.Research/HVG/Isabelle/dist/Isabelle2002/doc/intr
o.pdf>. March 2002.

[Pau03] Paulson, L. and Nipkow, T., Isabelle Homepage.

<www.cl.cam.ac.uk/Research/HVG/Isabelle>

[Pfe03] Pfenning and Schurmann. The Twelf Project.

<www.cs.cmu.edu/~twelf>

[Rad87] Radium. FTLS Must Accurately Describe TCB Operations (C1-CI-01-
87). <http://www.radium.ncsc.mil/tpep/library/interps/0237.html>.
1987

134

[Rus96] Rushby, J.M. PVS:Combining Specification, Proof Checking.

<people.cs.uchicago.edu/~robby/contract-reading-list/pvs-
cav96.ps>.1996.

[Rus98] Rushby, J., Owre, S. and Shankar, N., Subtypes for Specifications:

Predicate Subtyping in PVS. IEEE Transaction on Software
Engineering. Vol. 24, No. 9, September 1998

[Sec98] Secure Computing Corporation. Composability for Secure Systems Top

Level Specification (TLS).
<http://www.securecomputing.com/css/tls.pdf>. July 1998

[Sec96] Secure Computing Corporation. DTOS Formal Security Policy

Model(FSPM). pgs. 1-20, September 1996.

[Sec96*] Secure Computing Corporation. DTOS Formal Top-Level
Specification (FTLS). pgs. 1-20, December 1996

[Sha01] Shankar, N. and others. PVS Prover Guide. SRI International.

November 2001. <http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf>

[Sri03] SRI International. PVS Homepage. <pvs.csl.sri.com>

[Sta03] Stanford University. STeP Homepage. <www-step.stanford.edu>

[Sul03] Sullivan, E.C., Security Policy Models: The Bell-Lapadula Model.

[Tum03] TU Muenchen. AutoFOCUS Homepage. <autofocus.informatik.tu-

muenchen.de/index-e.html>

[Uom98] University of Manchestor. VDM-Vienna Development Method.

<www.vienna.cc.evdm.htm>. 1998.

[Wil97] Wilding, M.M. Robust Computer System Proofs in PVS.
<citeseer.nj.nec.com/wilding97robust.html>. 1997

[You96] Young, William. The Specification of a Simple Autopilot in ACL2.

<www.cl.cam.ac.uk/~mjcg/BDD/facs21-talk.ps.gz>. July 1996.

[You96*] Young William, Comparing Verification System: Interactive
Consistency in ACL2.
<www.cs.utexas.edu/users/moore/publications/others/interactive-
consistency-young.ps>. 1996

135

[Zha98] Zhang, Wenhui. Evaluation of verification tools <
www.ifi.uio.np/~adapt/adapt-ft-05.ps.gz>. 1998

136

THIS PAGE INTENTIONALLY LEFT BLANK

137

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Ernest McDuffie
 National Science Foundation
 Arlington, VA

4. RADM Zelebor

N6/Deputy DON CIO
Arlington, VA

5. Russell Jones
 N641

Arlington, VA

6. David Wirth
N641
Arlington, VA

7. CAPT Sheila McCoy
Headquarters U.S. Navy
Arlington, VA

8. CAPT Robert Zellmann
CNO Staff N614
Arlington, VA

9. Dr. Ralph Wachter
ONR
Arlington, VA

10. Dr. Frank Deckelman
ONR
Arlington, VA

11. Richard Hale
DISA
Falls Church, VA

138

12. George Bieber
OSD
Washington, DC

13. Deborah Cooper
DC Associates, LLC
Roslyn, VA

14. David Ladd

Microsoft Corporation
Redmond, WA

15. Marshall Potter

Federal Aviation Administration
Washington, DC

16. Ernest Lucier
Federal Aviation Administration
Washington, DC

17. Keith Schwalm

DHS
Washington, DC

18. RADM Joseph Burns
Fort George Meade, MD

19. Douglas Maugham
DARPA

 Arlington, VA

20. Howard Andrews
CFFC
Norfolk, VA

21. Steve LaFountain
 NSA

Fort Meade, MD

22. Penny Lehtola
NSA
Fort Meade, MD

23. Dr. George Dinolt
Naval Postgraduate School
Monterey, CA

139

24. Professor Timothy Levin

Naval Postgraduate School
Monterey, CA

25. Sonali Ubhayakar

Naval Postgraduate School
Monterey, CA

